Despite increasing understanding of the prognostic importance of vascular stiffening linked to perivascular fibrosis in hypertension, the molecular and cellular regulation of this process is poorly understood. OBJECTIVES: To study the functional role of microRNA-214 (miR-214) in the induction of perivascular fibrosis and endothelial dysfunction driving vascular stiffening. METHODS AND RESULTS: Out of 381 miRs screened in the perivascular tissues in response to Ang II (angiotensin II)-mediated hypertension, miR-214 showed the highest induction (8-fold, P=0.0001). MiR-214 induction was pronounced in perivascular and circulating T cells, but not in perivascular adipose tissue adipocytes. Global deletion of miR-214 −/− prevented Ang II-induced periaortic fibrosis, Col1a1, Col3a1, Col5a1, and Tgfb1 expression, hydroxyproline accumulation, and vascular stiffening, without difference in blood pressure. Mechanistic studies revealed that miR-214 −/− mice were protected against endothelial dysfunction, oxidative stress, and increased Nox2, all of which were induced by Ang II in WT mice. Ang IIinduced recruitment of T cells into perivascular adipose tissue was abolished in miR-214 −/− mice. Adoptive transfer of miR-214 −/− T cells into RAG1 −/− mice resulted in reduced perivascular fibrosis compared with the effect of WT T cells. Ang II induced hypertension caused significant change in the expression of 1380 T cell genes in WT, but only 51 in miR-214 −/−. T cell activation, proliferation and chemotaxis pathways were differentially affected. MiR-214 −/− prevented Ang II-induction of profibrotic T cell cytokines (IL-17, TNF-α, IL-9, and IFN-γ) and chemokine receptors (CCR1, CCR2, CCR4, CCR5, CCR6, and CXCR3). This manifested in reduced in vitro and in vivo T cell chemotaxis resulting in attenuation of profibrotic perivascular inflammation. Translationally, we show that miR-214 is increased in plasma of patients with hypertension and is directly correlated to pulse wave velocity as a measure of vascular stiffness. CONCLUSIONS: T-cell-derived miR-214 controls pathological perivascular fibrosis in hypertension mediated by T cell recruitment and local profibrotic cytokine release. VISUAL OVERVIEW: An online visual overview is available for this article.
Endothelial dysfunction and inflammation are key mechanisms of vascular disease. We hypothesised that heterogeneity of monocyte subpopulations may be related to the development of vascular dysfunction in coronary artery disease (CAD). Therefore, we examined the relationships between monocyte subsets (CD14CD16 "classical - Mon1", CD14CD16 "intermediate - Mon2" and CD14CD16 "nonclassical - Mon3"), endothelial function and risk factor profiles in 130 patients with CAD undergoing coronary artery bypass grafting. This allowed for direct nitric oxide (NO) bioavailability assessment using isometric tension studies ex vivo (acetylcholine; ACh- and sodium-nitropruside; SNP-dependent) in segments of internal mammary arteries. The expression of CD14 and CD16 antigens and activation markers were determined in peripheral blood mononuclear cells using flow cytometry. Patients with high CD14CD16 "nonclassical" and low CD14CD16 "classical" monocytes presented impaired endothelial function. High frequency of CD14CD16 "nonclassical" monocytes was associated with increased vascular superoxide production. Furthermore, endothelial dysfunction was associated with higher expression of activation marker CD11c selectively on CD14CD16 monocytes. Nonclassical and classical monocyte frequencies remained independent predictors of endothelial dysfunction when major risk factors for atherosclerosis were taken into account (β=0.18 p=0.04 and β=-0.19 p=0.03, respectively). In summary, our data indicate that CD14CD16 "nonclassical" monocytes are associated with more advanced vascular dysfunction measured as NO- bioavailability and vascular reactive oxygen species production.
Purpose of ReviewHypertension is a common disorder with substantial impact on public health due to highly elevated cardiovascular risk. The mechanisms still remain unclear and treatments are not sufficient to reduce risk in majority of patients. Inflammatory mechanisms may provide an important mechanism linking hypertension and cardiovascular risk. We aim to review newly identified immune and inflammatory mechanisms of hypertension with focus on their potential therapeutic impact.Recent FindingsIn addition to the established role of the vasculature, kidneys and central nervous system in pathogenesis of hypertension, low-grade inflammation contributes to this disorder as indicated by experimental models and GWAS studies pointing to SH2B3 immune gene as top key driver of hypertension. Immune responses in hypertension are greatly driven by neoantigens generated by oxidative stress and modulated by chemokines such as RANTES, IP-10 and microRNAs including miR-21 and miR-155 with other molecules under investigation. Cells of both innate and adoptive immune system infiltrate vasculature and kidneys, affecting their function by releasing pro-inflammatory mediators and reactive oxygen species.SummaryImmune and inflammatory mechanisms of hypertension provide a link between high blood pressure and increased cardiovascular risk, and reduction of blood pressure without attention to these underlying mechanisms is not sufficient to reduce risk.
Ankylosing spondylitis (AS) is associated with high cardiovascular morbidity and mortality. Recent studies indicate that microvascular dysfunction may underlie cardiovascular risk in AS. We hypothesized, that microvascular morphology and dysfunction is linked to AS activity and is modifiable by TNF-α inhibitor (TNFi) treatment. Functional Laser Doppler Flowmetry with post-occlusive reactive hyperemia, and structural nailfold capillaroscopy were performed in 54 patients with AS and 28 matched controls. Active AS was diagnosed based on BASDAI ≥ 4 (n = 37). Effects of 3-month TNFi on microcirculation in active AS were studied. AS was associated with prolonged time to peak hyperemia compared to healthy controls. High disease activity was associated with increased time to peak hyperemia and decreased peak hyperemia when compared to patients with inactive AS. In capillaroscopy, AS was associated with morphological abnormalities indicating increased neoangiogenesis and pericapillary edema compared to controls. Microvascular function improved following 3 months of TNFi in reference to basal flow as well as post-occlusive parameters. TNFi reduced pericapillary edema, while other parameters of capillary morphology remained unchanged. Microvascular dysfunction and capillary neovascular formation are associated with disease activity of AS. Anti-TNF-α treatment may restore microcirculation function and capillary edema but does not modify microvascular structural parameters.
The departmental journal club (JC) is a well-established form of continuing professional development (CPD). Social media offers a range of interactive online platforms, allowing the traditional JC to move from a formal educational meeting with local health professionals to a digital platform with users across the world. The authors created the General Internal Medicine JC (@GIMJClub) on Twitter and following a year of activity retrospectively analysed the participation and impact of this medium of JC delivery. There were 61 different participants across different continents, specialties and levels who participated in the 12 JC sessions and sent 1,543 tweets in total. Factors that appeared to infl uence the success of an individual JC session included choosing diverse, topical papers to discuss and a wide range of hosts. This work demonstrates the success of a Twitter-based general internal medicine JC for CPD. @GIMJClub facilitated unique and diverse interactions not otherwise available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.