For proteins of < 20 kDa, this new radical site dissociation method cleaves different and many more backbone bonds than the conventional MS/MS methods (e.g., collisionally activated dissociation, CAD) that add energy directly to the even-electron ions. A minimum kinetic energy difference between the electron and ion maximizes capture; a 1 eV difference reduces capture by 10(3). Thus, in an FTMS ion cell with added electron trapping electrodes, capture appears to be achieved best at the boundary between the potential wells that trap the electrons and ions, now providing 80 +/- 15% precursor ion conversion efficiency. Capture cross section is dependent on the ionic charge squared (z2), minimizing the secondary dissociation of lower charge fragment ions. Electron capture is postulated to occur initially at a protonated site to release an energetic (approximately 6 eV) H. atom that is captured at a high-affinity site such as -S-S- or backbone amide to cause nonergodic (before energy randomization) dissociation. Cleavages between every pair of amino acids in mellitin (2.8 kDa) and ubiquitin (8.6 kDa) are represented in their ECD and CAD spectra, providing complete data for their de novo sequencing. Because posttranslational modifications such as carboxylation, glycosylation, and sulfation are less easily lost in ECD than in CAD, ECD assignments of their sequence positions are far more specific.
Disulfide bonds in gaseous multiply-protonated proteins are preferentially cleaved in the mass spectrometer by low-energy electrons, in sharp contrast to excitation of the ions by photons or low-energy collisions. For S−S cyclized proteins, capture of one electron can break both an S−S bond and a backbone bond in the same ring, or even both disulfide bonds holding two peptide chains together (e.g., insulin), enhancing the sequence information obtainable by tandem mass spectrometry on proteins in trace amounts. Electron capture at uncharged S−S is unlikely; cleavage appears to be due to the high S−S affinity for H• atoms, consistent with a similar favorability found for tryptophan residues. RRKM calculations indicate that H• capture dissociation of backbone bonds in multiply-charged proteins represents nonergodic behavior, as proposed for the original direct mechanism of electron capture dissociation.
We recently showed that ligand-mediated cross-linking of FcepsilonRI, the high-affinity receptor for immunoglobulin E, on RBL-2H3 mast cells results in its co-isolation with detergent-resistant membranes (DRM) and its consequent tyrosine phosphorylation by the co-localized tyrosine kinase Lyn that is a critical early event in signaling by this receptor [Field et al. (1997) J. Biol. Chem. 272, 4276-4280]. As part of efforts to determine the structural bases for these interactions, we examined the phospholipid composition of DRM vesicles isolated from RBL-2H3 cells under conditions that preserve FcepsilonRI association. We used positive and negative mode electrospray Fourier transform ion cyclotron resonance mass spectrometry to compare quantitatively the phospholipid composition of isolated DRM to that of total cell lipids and to a plasma membrane preparation. From these analyses, over 90 different phospholipid species were spectrally resolved and unambiguously identified; more than two-thirds of these were determined with a precision of +/-0.5% (absolute) or less. Quantitative characterization of lipid profiles shows that isolated DRM are substantially enriched in sphingomyelin and in glycerophospholipids with a higher degree of saturation as compared to total cellular lipids. Plasma membrane vesicles isolated from RBL-2H3 cells by chemically induced blebbing exhibit a degree of phospholipid saturation that is intermediate between DRM and total cellular lipids, and significant differences in the headgroup distribution between DRM and plasma membranes vesicles are observed. DRM from cells with cross-linked FcepsilonRI exhibit a larger ratio of polyunsaturated to saturated and monounsaturated phospholipids than those from unstimulated cells. Our results support and strengthen results from previous studies suggesting that DRM have a lipid composition that promotes liquid-ordered structure. Furthermore, they demonstrate the potential of mass spectrometry for examining the role of membrane structure in receptor signaling and other cellular processes.
No abstract
Posttranslational glycosylation is critical for biological function of many proteins, but its structural characterization is complicated by natural heterogeneity, multiple glycosylation sites, and different forms. Here, a top-down mass spectrometry (MS) characterization is applied to three constructs of the Fc segment of IgE: Fcepsilon(3-4) (52 kDa) and Fcepsilon(2-3-4)(2) (76 kDa) disulfide-bonded homodimers. Fourier transform MS of a reduced sample of Fcepsilon(2-3-4) gave molecular masses of 37 527, 37 689, 37 851, and 38 014 Da, directly characterizing multiple glycoforms (hexose = 162 Da) without chromatographic separation. Limited proteolysis of the nonreduced Fcepsilon(2-3-4)(2) protein yielded a peptide mixture with molecular weight values that agreed with those expected from the DNA sequence. The single glycosylation site in these constructs was identified, and quantities were determined of five glycoforms that agreed within +/-2% of the molecular ion values. The 2-D mass spectrum of two glycosylated peptides showed these to have high-mannose structures, -GlcNAc-(hex)(n)(), demonstrating that Fcepsilon(2-3-4) has a single such structure of n = 5-9. For a mutated sample of Fcepsilon(3-4), in addition to five glycoforms, MS showed a molecular discrepancy that could be assigned with proteolysis and 2-D mass spectra to the oxidation of two methionines and an additional residue difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.