Lysosomal storage diseases (LSDs), of which about 50 are known, are caused by the defective activity of lysosomal proteins, resulting in accumulation of unmetabolized substrates. As a result, a variety of pathogenic cascades are activated such as altered calcium homeostasis, oxidative stress, inflammation, altered lipid trafficking, autophagy, endoplasmic reticulum stress, and autoimmune responses. Some of these pathways are common to many LSDs, whereas others are only altered in a subset of LSDs. We now review how these cascades impact upon LSD pathology and suggest how intervention in the pathways may lead to novel therapeutic approaches.All eukaryotic cells contain lysosomes, membrane-bound organelles that contain a range of acid hydrolases such as proteases, glycosidases, sulfatases, phosphatases, and lipases.
The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2.
Gaucher's disease (GD), an inherited metabolic disorder caused by mutations in the glucocerebrosidase gene (GBA), is the most common lysosomal storage disease. Heterozygous mutations in GBA are a major risk factor for Parkinson's disease. GD is divided into three clinical subtypes based on the absence (type 1) or presence (types 2 and 3) of neurological signs. Type 1 GD was the first lysosomal storage disease (LSD) for which enzyme therapy became available, and although infusions of recombinant glucocerebrosidase (GCase) ameliorate the systemic effects of GD, the lack of efficacy for the neurological manifestations, along with the considerable expense and inconvenience of enzyme therapy for patients, renders the search for alternative or complementary therapies paramount. Glucosylceramide and glucosylsphingosine accumulation in the brain leads to massive neuronal loss in patients with neuronopathic GD (nGD) and in nGD mouse models. However, the mode of neuronal death is not known. Here, we show that modulating the receptor-interacting protein kinase-3 (Ripk3) pathway markedly improves neurological and systemic disease in a mouse model of GD. Notably, Ripk3 deficiency substantially improved the clinical course of GD mice, with increased survival and motor coordination and salutary effects on cerebral as well as hepatic injury.
Gaucher's disease, the most common lysosomal storage disorder, is caused by the defective activity of glucocerebrosidase, the lysosomal hydrolase that degrades glucosylceramide. The neuronopathic forms of Gaucher's disease are characterized by severe neuronal loss, astrocytosis and microglial proliferation, but the cellular and molecular pathways causing these changes are not known. In the current study, we delineate the role of neuroinflammation in the pathogenesis of neuronopathic Gaucher's disease and show significant changes in levels of inflammatory mediators in the brain of a neuronopathic Gaucher's disease mouse model. Levels of messenger RNA expression of interleukin -1β, tumour necrosis factor-α, tumour necrosis factor-α receptor, macrophage colony-stimulating factor and transforming growth factor-β were elevated by up to ∼30-fold, with the time-course of the increase correlating with the progression of disease severity. The most significant elevation was detected for the chemokines CCL2, CCL3 and CCL5. Blood-brain barrier disruption was also evident in mice with neuronopathic Gaucher's disease. Finally, extensive elevation of nitrotyrosine, a hallmark of peroxynitrite (ONOO(-)) formation, was observed, consistent with oxidative damage caused by macrophage/microglia activation. Together, our results suggest a cytotoxic role for activated microglia in neuronopathic Gaucher's disease. We suggest that once a critical threshold of glucosylceramide storage is reached in neurons, a signalling cascade is triggered that activates microglia, which in turn releases inflammatory cytokines that amplify the inflammatory response, contributing to neuronal death.
Gaucher disease has recently received wide attention due to the unexpected discovery that it is a genetic risk factor for Parkinson's disease. Gaucher disease is caused by the defective activity of the lysosomal enzyme, glucocerebrosidase (GCase; GBA1), resulting in intracellular accumulation of the glycosphingolipids, glucosylceramide and psychosine. The rare neuronopathic forms of GD (nGD) are characterized by profound neurological impairment and neuronal cell death. We have previously described the progression of neuropathological changes in a mouse model of nGD. We now examine the relationship between glycosphingolipid accumulation and initiation of pathology at two pre-symptomatic stages of the disease in four different brain areas which display differential degrees of susceptibility to GCase deficiency. Liquid chromatography electrospray ionization tandem mass spectrometry demonstrated glucosylceramide and psychosine accumulation in nGD brains prior to the appearance of neuroinflammation, although only glucosylceramide accumulation correlated with neuroinflammation and neuron loss. Levels of other sphingolipids, including the pro-apoptotic lipid, ceramide, were mostly unaltered. Transmission electron microscopy revealed that glucosylceramide accumulation occurs in neurons, mostly in the form of membrane-delimited pseudo-tubules located near the nucleus. Highly disrupted glucosylceramide-storing cells, which are likely degenerating neurons containing massive inclusions, numerous autophagosomes and unique ultrastructural features, were also observed. Together, our results indicate that a certain level of neuronal glucosylceramide storage is required to trigger neuropathological changes in affected brain areas, while other brain areas containing similar glucosylceramide levels are unaltered, presumably because of intrinsic differences in neuronal properties, or in the neuronal environment, between various brain regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.