Gaucher's disease (GD), an inherited metabolic disorder caused by mutations in the glucocerebrosidase gene (GBA), is the most common lysosomal storage disease. Heterozygous mutations in GBA are a major risk factor for Parkinson's disease. GD is divided into three clinical subtypes based on the absence (type 1) or presence (types 2 and 3) of neurological signs. Type 1 GD was the first lysosomal storage disease (LSD) for which enzyme therapy became available, and although infusions of recombinant glucocerebrosidase (GCase) ameliorate the systemic effects of GD, the lack of efficacy for the neurological manifestations, along with the considerable expense and inconvenience of enzyme therapy for patients, renders the search for alternative or complementary therapies paramount. Glucosylceramide and glucosylsphingosine accumulation in the brain leads to massive neuronal loss in patients with neuronopathic GD (nGD) and in nGD mouse models. However, the mode of neuronal death is not known. Here, we show that modulating the receptor-interacting protein kinase-3 (Ripk3) pathway markedly improves neurological and systemic disease in a mouse model of GD. Notably, Ripk3 deficiency substantially improved the clinical course of GD mice, with increased survival and motor coordination and salutary effects on cerebral as well as hepatic injury.
A limitation to antitumor immunity is the dysfunction of T cells in the tumor microenvironment, in part due to upregulation of coinhibitory receptors such as PD-1. Here, we describe that poliovirus receptor-related immunoglobulin domain protein (PVRIG) acts as a coinhibitory receptor in mice. Murine PVRIG interacted weakly with poliovirus receptor (PVR) but bound poliovirus receptorlike 2 (PVRL2) strongly, making the latter its principal ligand. As in humans, murine NK and NKT cells constitutively expressed PVRIG. However, when compared with humans, less PVRIG transcript and surface protein was detected in murine CD8 + T cells ex vivo. However, activated CD8 + T cells upregulated PVRIG expression. In the mouse tumor microenvironment, infiltrating CD8 + T cells expressed PVRIG whereas its ligand, PVRL2, was detected predominantly on myeloid cells and tumor cells, mirroring the expression pattern in human tumors. PVRIG-deficient mouse CD8 + T cells mounted a stronger antigen-specific effector response compared with wildtype CD8 + T cells during acute Listeria monocytogenes infection. Furthermore, enhanced CD8 + T-
The clinical use of anti-CD40 agonist monoclonal antibodies (mAbs) is aimed at recruiting the immune system to fight the tumor cells. This approach has been demonstrated to be effective in various preclinical models. However, human CD40 Abs displayed only modest antitumor activity in cancer patients, characterized by low efficacy and dose-limiting toxicity. While recent studies highlight the importance of engineering the Fc region of human CD40 mAbs to optimize their agonistic potency, toxicity remains the main limiting factor, restricting clinical application to suboptimal doses. Here, we discuss the current challenges in realizing the full potential of CD40 mAbs in clinical practice, and describe novel approaches designed to circumvent the systemic toxicity associated with CD40 agonism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.