Most current methods for 802.11-based indoor localization depend on surveys conducted by experts or skilled technicians. Some recent systems have incorporated surveying by users. Structuring localization systems "organically," however, introduces its own set of challenges: conveying uncertainty, determining when user input is actually required, and discounting erroneous and stale data. Through deployment of an organic location system in our nine-story building, which contains nearly 1,400 distinct spaces, we evaluate new algorithms for addressing these challenges. We describe the use of Voronoi regions for conveying uncertainty and reasoning about gaps in coverage, and a clustering method for identifying potentially erroneous user data. Our algorithms facilitate rapid coverage while maintaining positioning accuracy comparable to that achievable with survey-driven indoor deployments.
Similarity measures for text have historically been an important tool for solving information retrieval problems. In many interesting settings, however, documents are often closely connected to other documents, as well as other non-textual objects: for instance, email messages are connected to other messages via header information. In this paper we consider extended similarity metrics for documents and other objects embedded in graphs, facilitated via a lazy graph walk. We provide a detailed instantiation of this framework for email data, where content, social networks and a timeline are integrated in a structural graph. The suggested framework is evaluated for two email-related problems: disambiguating names in email documents, and threading. We show that reranking schemes based on the graph-walk similarity measures often outperform baseline methods, and that further improvements can be obtained by use of appropriate learning methods.
We demonstrate a method for collaborative ranking of future events. Previous work on recommender systems typically relies on feedback on a particular item, such as a movie, and generalizes this to other items or other people. In contrast, we examine a setting where no feedback exists on the particular item. Because direct feedback does not exist for events that have not taken place, we recommend them based on individuals' preferences for past events, combined collaboratively with other peoples' likes and dislikes. We examine the topic of unseen item recommendation through a user study of academic (scientific) talk recommendation, where we aim to correctly estimate a ranking function for each user, predicting which talks would be of most interest to them. Then by decomposing user parameters into shared and individual dimensions, we induce a similarity metric between users based on the degree to which they share these dimensions. We show that the collaborative ranking predictions of future events are more effective than pure content-based recommendation. Finally, to further reduce the need for explicit user feedback, we suggest an active learning approach for eliciting feedback and a method for incorporating available implicit user cues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.