Checklists are used to aid the fulfillment of safety critical activities in a variety of different applications, such as aviation, health care or labour inspections. However, optimizing a checklist for a specific purpose can be challenging. Checklists also need to be trustworthy and user friendly to promote user compliance. With labour inspections as a starting point, we introduce the Checklist Construction Problem. To address the problem, we seek to optimize the content of labour inspection checklists in order to improve the working conditions in every organisation targeted for inspections. To do so, we introduce a hybrid framework called BCBR to construct trustworthy checklists. BCBR is based on case-based reasoning (CBR) and Bayesian inference (BI) and constructs new checklists based on past cases. A key novelty of BCBR is the use of BI for constructing new features in past cases. The augmented past cases are retrieved via CBR to construct new checklists, which ensures justification for the content of the checklists and promotes trust. Experiments suggest that BCBR is more effective than any other baseline we tested, in terms of constructing trustworthy checklists.
Every year there are 1.9 million deaths world-wide attributed to occupational health and safety risk factors. To address poor working conditions and fulfill UN's SDG 8, "protect labour rights and promote safe working environments for all workers", governmental agencies conduct labour inspections, using checklists to survey individual organisations for working environment violations. Recent research highlights the benefits of using machine learning for creating checklists. However, the current methods only create static checklists and do not adapt them to new information that surfaces during use. In contrast, we propose a new method called Context-aware Bayesian Case-Based Reasoning (CBCBR) that creates dynamic checklists. These checklists are continuously adapted as the inspections progress, based on how they are answered. Our evaluations show that CBCBR's dynamic checklists outperform static checklists created via the current state-of-the-art methods, increasing the expected number of working environment violations found in the labour inspections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.