Background and Aim: Pregnancy and lactation have an impact on health status of animals and constitute burden on body metabolites and the oxidant-antioxidant equilibrium. This study is aimed at evaluating metabolic and oxidative stress patterns and parity impacts in both primiparous and multiparous dairy cows. Materials and Methods: Twenty-seven primiparous and multiparous Holstein cows were enrolled and categorized into four groups according to their physiologic status: Primiparous peripartum heifer (n=5), primiparous postpartum cow (n=9), multiparous peripartum cows (n=5), and multiparous postpartum cows (n=8). Blood sample was taken from each animal – peripartum groups at 3 weeks prepartum and postpartum groups at 3 weeks post-parturition – for complete blood picture, glucose, cholesterol, triglyceride, total protein, albumin, non-esterified fatty acids (NEFA), malondialdehyde (MDA), total antioxidant capacity, and haptoglobin estimation. Results: Postpartum primiparous cows showed significant decrease in glucose, total protein, and albumin while showing significant increase in MDA, NEFA, and globulin; on the other hand, multiparous postpartum cows showed significant decrease in glucose, total protein, and albumin, associated with significant increase in cholesterol and MDA when compared with prepartum PP and MP cows, respectively. Postpartum multiparous cows significantly showed reduction in NEFA when compared to primiparous postpartum cows. Hematologic profiles of postpartum primiparous and multiparous cows showed significant decrease in red blood cells and packed cell volume, significant increase in lymphocytes when compared with prepartum cows. Conclusion: Metabolic and oxidative abnormalities exist in both primiparous and multiparous cows during the transition phase, however postpartum primiparous cows show higher susceptibility to negative energy balance impacts. Oxidant/ antioxidant imbalance occurred in both the primiparous and multiparous postpartum cows, highlighting the importance of oxidative stress profiles in the assessment of metabolic health status during transition.
Macro and microminerals are essential for dairy cattle health. The principal purpose of the current investigation was to explore the modifications of the blood levels of Copper (Cu), Zinc (Zn), Iron (Fe), Calcium (Ca), Phosphorus (P), and Magnesium (Mg) alterations during different production stages of clinically healthy dairy primiparous and multiparous cows. This study enrolled 20 healthy Holstein primiparous and multiparous dairy cattle (Ten primiparous and ten multiparous). Three blood samples were taken from each cow in close-up, early lactation, and mid-lactation phases. Samples were analyzed for Cu, Zn, Fe, Ca, P, and Mg levels. In the primiparous group, significant elevation in Cu, Zn, Ca, P, and Mg was seen in lactating groups compared to the prepartum group. Significant elevation in both P and Cu were detected in early and mid-lactating multiparous cows respectively compared to the prepartum phase. Serum Iron levels did not differ throughout different phases in primiparous and multiparous groups. The production stage strongly modified the trace elements profile in different parities. The parity and stage of lactation should yield more attention during the ration formulation and minerals mix supplementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.