Oxidative stress is a condition caused by an imbalance in the occurrence of reactive oxygen species in the cells and tissues of organisms. An ultra-performance liquid chromatography–electrospray ionization tandem mass spectrometry (UPLC–ESI–MS/MS) method was developed for the simultaneous determination of two oxidative stress biomarkers, 8-hydroxydeoxyguanosine (8OHDG) and dityrosine (DIY), in the gills, skin, dorsal fin, and liver tissue of Atlantic salmon (Salmo salar) parr. The use of target analyte-specific 13C and 15N internal standards allowed quantification of each target analyte to be performed through the standard solvent calibration curve. The relative recoveries [mean ± (relative standard deviation%)] of 8OHDG and DIY were 101 ± 11 and 104 ± 13% at a fortified concentration of 10 ng/mL (8OHDG) and 500 ng/mL (DIY), respectively, ensuring the accuracy of the extraction and quantification. The chromatographic separation was carried out using a gradient elution program with a total run time of 5 min. The limits of detection (LODs) were 0.11 and 1.37 ng/g wet weight (w.w.) for 8OHDG and DIY, respectively. To demonstrate the applicability of the developed method, it was applied in 907 tissue samples that were collected from Atlantic salmon parr individuals reared in an experimental land-based recirculating aquaculture system (RAS) treated with peracetic acid. Moreover, the possibility of using the dorsal fin as an alternative matrix for the minimally invasive assessment of oxidative stress in Atlantic salmon parr was introduced. To our knowledge, 8OHDG and DIY were used for the first time as biomarkers for biomonitoring the fish health (oxidative stress) of Atlantic salmon parr in RAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.