Abstrak -LTE (long Term Evolution) merupakan teknologi komunikasi wireless generasi keempat yang saat ini sedang mengalami perkembangan. Salah satu perangkat yang sangat dibutuhkan pada teknologi tersebut adalah antena. Teknik yang digunakan adalah teknik MIMO. Teknik MIMO menggunakan multiantena baik di sisi transmitter maupun di sisi receiver dengan koefisien korelasi di bawah 0,2, Untuk menghasilkan nilai koefisien korelasi di bawah 0,2. antena menggunakan λ/2 untuk jarak antar dua antena. Perancangan dan realisasi antena pada penelitian ini dipergunakan untuk aplikasi LTE yang bekerja pada frekuensi 2,3 GHz sampai 2,4 GHz., Simulasi antena menunjukkan frekuensi kerja yang direncanakan yaitu antara 2,3 GHz -2,4 GHz, memiliki Return Loss -38,582 dB dan VSWR 1,0238 pada frekuensi tengah 2,350 MHz, gain sebesar 4,332 dB. Hasil pengukuran antena satu terdapat pergeseran frekuensi dari 2,300 MHz -2,400 MHz menjadi 2,310 -2,384 MHz, antena ini memiliki Return Loss -35,476 dB dan VSWR 1,03. Bandwidth 74 Mh., Untuk antena dua terdapat pergeseran frekuensi menjadi 2,310 -2,382 MHz. dengan Return Loss -33,637 dB dan VSWR 1,042. Bandwidth 72 MHz. Pada frekuensi 2,35 GHz gain sebesar 8 dBi dengan pola radiasi unidirectional dan polarisasi elips, Dari perancangan dan analisis tersebut, maka antena ini dapat digunakan sebagai antena teknologi LTE. Kata Kunci -Antena Mikrostrip MIMO, LTE, Gain, VSWR, Bandwidth dan Frekuensi,Abstract -LTE (Long Term Evolution) is the fourth generation of wireless communication technology which is currently undergoing development. One device that is needed in these technologies is the antenna. The technique used is the technique of MIMO. Multiantena MIMO technique uses both sides of the transmitter and receiver side with correlation coefficient below 0.2. To produce a correlation coefficient below 0.2, the antenna using λ / 2 for the distance between the two antennas. Design and realization of the antenna in this paper is used for LTE applications which work at a frequency of 2.3 GHz to 2.4 GHz. Antenna simulation shows the frequency of work planned is between 2.3 GHz -2.4 GHz, has a Return Loss and VSWR 1.0238 -38.582 dB at 2350 MHz center frequency, a gain of 4.332 dBi. The measurement results of the antenna are frequency shift of 2.300 MHz -2.400 MHz to 2.310-2.384 MHz, this antenna has -35.476 dB Return Loss and VSWR 1.034. Bandwidth 74 MHz. For two antenna are frequency shift into 2.310-2.382 MHz, with -33.637 dB Return Loss and VSWR 1.042. Bandwidth 72 MHz. At 2.35 GHz frequency gain of 8 dBi with radiation pattern unidirectional and elliptical polarization. From the design and the analysis, the antenna can be used as an antenna for LTE technology.
AbstrakAvailability merupakan suatu parameter yang digunakan untuk mengetahui kehandalan sistem pada jaringan microwave. Namun ada kalanya availability yang dihasilkan dalam perancangan sistem tidak optimal, maka perlu dilakukan optimasi. Optimasi dapat dilakukan dengan menggunakan teknik space diversity, di mana akan dilakukan penambahan antena diversity utuk melakukan optimasinya. Penelitian ini bertujuan untuk mengetahui peningkatan availability yang paling signifikan dari beberapa kondisi jaringan, yaitu berlokasi di atas laut dan daerah pegunungan. Data yang dipergunakan diperoleh dengan melakukan studi kasus pada PT. Alita Praya Mitra, sedangkan untuk melakukan simulasi perancangan jaringan menggunakan aplikasi perangkat lunak Pathloss 5.0. Jaringan yang berada di Laut menghasilkan peningkatan availability yang lebih tinggi dari pada jaringan yang berada di pegunungan. Peningkatan availability jaringan di laut yaitu 0,961446%, sedangkan peningkatan availability jaringan di pegunungan yaitu 0,060623475%. Hal tersebut dikarenakan pengaruh oleh terrain roughness, climatic factor dan C factor. Nilai terrain roughness jaringan laut yaitu 6,10 meter, sedangkan jaringan di pegunungan yaitu 32,10 meter. Kemudian climatic factor jaringan laut bernilai 2 sedangkan jaringan pegunungan bernilai 0,25. Semakin kecil nilai terrain roughness dan semakin besar nilai climatic factor mengakibatkan nilai C factor meningkat. Nilai C factor jaringan laut yaitu 6,56 sedangkan jaringan di pegunungan yaitu 0,1. Kata kunci : Space diversity, Microwave, Availability AbstractAvailability is a parameter used to determine the reliability of systems on microwave networks. But there are condition when the availability generated in system design is not optimal, therefore need to be optimized. Optimization can be done by using space diversity technique, where will be done the addition of antenna diversity to do the optimization. Research aims to determine the availability of the most significant of some network conditions, that located above the sea and located in the mountains. The data used is obtained by doing case study at PT. Alita Praya Mitra, while to simulate network design using Pathloss 5.0 software application. Networks in the Sea result in increased availability higher than those in the mountains. The increase of network availability in the sea is 0.961446%, while the increase in network availability in the mountains is 0.060623475%. This is due to the influence of terrain roughness, climatic factor and C factor. Terrain roughness value of marine tissue is 6.10 meters, while the network in the mountains is 32.10 meters. Then the climatic factor of the marine network is worth 2 while the mountain network is worth 0.25. Then the value of C factor of sea tissue is 6.56 while the network in the mountains is 0.1.
Wireless Fidelity (WiFi) devices are often used to access the internet network, both for working and in information searching. Accessing the internet can be administered anywhere provided that the area is within the WiFi devices range. A WiFi device uses 2.4 GHz and 5 GHz operating frequencies. There were several methods employed in the previous studies so that an antenna design could work in two different frequencies, i.e., winding bowtie method, Sierpinski method, and double-circular method. This paper employed a simple method, the slit method. The objective of this paper is to discover a simple antenna model that works on 2.4 GHz and 5 GHz frequencies. This paper employed a square patch microstrip antenna with a slit method. The dimensions of the designed square patch microstrip antenna were 42.03 mm × 27.13 mm × 0.035 mm. The antenna worked at 2.4 GHz and 5 GHz frequencies. The obtained simulation results after the optimization showed that the square patch microstrip antenna using the slit method acquired a value of S11 (return loss) of -10.15 dB at a frequency of 2.4 GHz and -37.315 dB at a frequency of 5 GHz.
The implementation of 4G LTE network and its advantages gave us faster speed of mobile network. We need to know the performance of LTE mobile network in Sokaraja Tengah – Indonesia, which deployed by Telkomsel network provider by comparing its RSRP, SINR, RSRQ, and throughput using drive test method of Genex Probe. Signal performance was measured by drive test dedicated mode on the streamed videos and analyzed with Genex Assistant. The result shows that generally Telkomsel’s 4G LTE network in Sokaraja Tengah has 99.7% of (-70) – (-90) dBm RSRP value, 85.09% of 1-15 SINR value, 99.23% of (-15)-0 dBm RSRQ value, average uplink 2575 kbps and downlink 1530 kbps of throughput.
Wireless Sensor Network Pathloss COST 231 Multiwall WLAN IEEE 802.11 Tag RFID RPS RSSI Wireless Sensor Network is a solution to solve cable-based network problems especially in attendance applications with RFID Tag. However, in this research, RFID Tag based on Wireless Sensor Network is implemented in indoor conditions that have higher path loss than in outdoor conditions. This paper analyzed the distribution of RSSI receipt of indoor COST231 Multiwall path loss model by using Radiowave Propagation Simulator (RPS) to model the indoor condition of the building as the actual conditions such as the size and the building materials. This Simulation use 3 Node Router and 8 End node of Wifi RFID Reader with WLAN 1EEE 802.11.n communication protocol at 2.4 GHz frequency. The simulation result shows that the mean and deviation standard values of RSSI at the scenario router node plus end node implemented condition is -46.94 dBm and 10,79, respectively. ABSTRAK Kata kunci : Wireless Sensor Network Pathloss COST 231 Multiwall WLAN IEEE 802.11 Tag RFID RPS RSSIWireless Sensor Network adalah solusi dalam mengatasi masalah jaringan berbasis kabel terutama dalam aplikasi absensi mahasiswa dengan Tag RFID. Namun, pada studi ini, wireless sensor network diimplementasikan pada kondisi indoor yang memiliki pathloss lebih tinggi dibandingkan pada kondisi outdoor. Penelitian ini menganalisis sebaran daya terima RSSI pada simulasi model indoor path loss COST231 Multiwall dengan menggunakan Radiowave Propagation Simulator (RPS) untuk memodelkan kondisi indoor gedung sesuai dengan kondisi sebenarnya, baik dari ukuran maupun bahan gedung. Simulasi menggunakan 3 Node Router dan 8 End node dari Wifi RFID Reader dengan protocol komunikasi WLAN 1EEE 802.11.n pada frekuensi 2,4 GHz. Hasil simulasi menunjukkan bahwa nilai rata-rata dan standar deviasi RSSI pada kondisi terimplementasi dari router node dan end node adalah -46,94 dBm dan 10,79 secara berturut-turut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.