Raman lasing in a graded-index fiber (GIF) attracts now great deal of attention due to the opportunity to convert high-power multimode laser diode radiation into the Stokes wave with beam quality improvement based on the Raman clean-up effect. Here we report on the cascaded Raman generation of the 2nd Stokes order in the 1.1-km long GIF with 100-μm core directly pumped by 915-nm diodes. In the studied all-fiber scheme, the 1st Stokes order is generated at 950–954 nm in a linear cavity formed at GIF ends by two fiber Bragg gratings (FBGs) securing beam quality improvement from M2 ≈ 30 to M2 ≈ 2.3 due to special transverse structure of FBGs. The 2nd Stokes wave is generated either in linear (two FBGs) or half-open (one FBG) cavity with random distributed feedback via Rayleigh backscattering. Their comparison shows that the random lasing provides better beam quality and higher slope efficiency. Nearly diffraction limited beam (M2 ≈ 1.6) with power up to 27 W at maximum gain (996 nm), and 17 W at the detuned wavelength of 978 nm has been obtained, thus demonstrating that the 2nd-order random lasing in diode-pumped GIF with FBGs provides high-efficiency high-quality beam generation in a broad wavelength range within the Raman gain spectral profile.
We demonstrate a high-power, high-efficiency Raman laser based on a 100 µm core graded-index (GRIN) fiber directly pumped by 915 nm multimode laser diode modules in all-fiber configuration. Optimization of GRIN fiber length and pumping scheme was performed. As a result, 62 W of CW power has been obtained at a wavelength of 954 nm with a slope efficiency of 85%. The joint action of Raman clean-up effect and mode-selection properties of special fiber Bragg gratings inscribed in the central part of the GRIN fiber core results in significant beam quality enhancement for the generated Stokes beam ( < 3) in comparison with that of the pump radiation ( > 30). In addition, the exact value of the operating wavelength near the Raman gain maximum was varied. To the best of our knowledge, this is the first study of the impact of a Raman gain spectral profile on the power, spectrum and beam quality parameter M2 of multimode Raman laser. It appears that they very much dependent on the spectral region of Raman gain at which we work, when the wavelength is selected by a fiber Bragg grating inscribed in a multimode GRIN fiber.
An external-cavity generation of powerful ultrashort pulses in an all-fiber scheme by using a new type of phosphosilicate polarization maintaining fiber is investigated. The phosphorus-related Stokes shifted Raman pulse near 1.3 microns is observed. Optimization of Stokes output spectrum depending on pump pulse duration (chirp), energy and output coupling ratio of the cavity is performed. As result, the output energy of highly-chirped pulses compressible to 570 fs reaches 1.6 nJ.
Numerical simulation of a fiber optic parametric oscillator to produce picosecond narrowband pulses for coherent anti-Stokes Raman spectroscopy has been performed by an open source Python-based library using an extremely wide range of parameters, such as the pump pulse duration, parametric frequency shift, spectral bandwidth of the pump, and the parametric pulses. It required an extremely large calculation window, both in time and spectral domains. We managed to speed up the simulation 50 times using a graphic processor unit that allowed us to define the areas of stability for different lengths of standard passive (5–100 m) and photonic crystal (23–100 cm) fibers used in the external linear oscillator cavity. It was shown that highly chirped dissipative solitons at a wavelength about 800 nm can be generated with energy up to 55 nJ, which is limited by the pump depletion and self-phase modulation effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.