Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries characterized by leukocyte accumulation in the vessel wall. Both innate and adaptive immune responses contribute to atherogenesis, but the identity of atherosclerosis-relevant antigens and the role of antigen presentation in this disease remain poorly characterized. We developed live-cell imaging of explanted aortas to compare the behavior and role of APCs in normal and atherosclerotic mice. We found that CD4 + T cells were capable of interacting with fluorescently labeled (CD11c-YFP + ) APCs in the aortic wall in the presence, but not the absence, of cognate antigen. In atherosclerosis-prone Apoe -/-CD11c-YFP + mice, APCs extensively interacted with CD4 + T cells in the aorta, leading to cell activation and proliferation as well as secretion of IFN-γ and TNF-α. These cytokines enhanced uptake of oxidized and minimally modified LDL by macrophages. We conclude that antigen presentation by APCs to CD4 + T cells in the arterial wall causes local T cell activation and production of proinflammatory cytokines, which promote atherosclerosis by maintaining chronic inflammation and inducing foam cell formation.
Cirrhosis is the end result of chronic liver disease. Hepatic stellate cells (HSC) are believed to be the major source of collagenproducing myofibroblasts in cirrhotic livers. Portal fibroblasts, bone marrow-derived cells, and epithelial to mesenchymal transition (EMT) might also contribute to the myofibroblast population in damaged livers. Fibroblast-specific protein 1 (FSP1, also called S100A4) is considered a marker of fibroblasts in different organs undergoing tissue remodeling and is used to identify fibroblasts derived from EMT in several organs including the liver. The aim of this study was to characterize FSP1-positive cells in human and experimental liver disease. FSP1-positive cells were increased in human and mouse experimental liver injury including liver cancer. However, FSP1 was not expressed by HSC or type I collagenproducing fibroblasts. Likewise, FSP1-positive cells did not express classical myofibroblast markers, including αSMA and desmin, and were not myofibroblast precursors in injured livers as evaluated by genetic lineage tracing experiments. Surprisingly, FSP1-positive cells expressed F4/80 and other markers of the myeloid-monocytic lineage as evaluated by double immunofluorescence staining, cell fate tracking, flow cytometry, and transcriptional profiling. Similar results were obtained for bone marrow-derived and peritoneal macrophages. FSP1-positive cells were characterized by increased expression of COX2, osteopontin, inflammatory cytokines, and chemokines but reduced expression of MMP3 and TIMP3 compared with Kupffer cells/macrophages. These findings suggest that FSP1 is a marker of a specific subset of inflammatory macrophages in liver injury, fibrosis, and cancer.tumor microenvironment
Most leukocytes can roll along the walls of venules at low shear stress (1 dyn/cm 2 ), but neutrophils have the ability to roll at 10-fold higher shear stress in microvessels in vivo 1 , 2 . The mechanisms involved in this shear-resistant rolling are known to involve cell flattening 3 and pulling of long membrane tethers at the rear 4 – 6 . Here, we show that these long tethers do not retract as postulated 6 , 7 , but instead persist and appear as ‘slings’ at the front of rolling cells. We demonstrate slings in a model of acute inflammation in vivo and on P-selectin in vitro , where P-selectin-glycoprotein-ligand-1 (PSGL-1) is presented as discrete sticky patches while LFA-1 is expressed over the entire length on slings. As neutrophils roll forward, slings wrap around the rolling cells and undergo a step-wise peeling from the P-selectin substrate enabled by the failure of PSGL-1 patches under hydrodynamic forces. The ‘step-wise peeling of slings’ is distinct from the ‘pulling of tethers’ reported previously 4 – 6 , 8 . Each sling effectively lays out a cell-autonomous adhesive substrate in front of neutrophils rolling at high shear stress during inflammation.
Atherosclerosis contributes to the development of many cardiovascular diseases, which remain the leading cause of death in developed countries. Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries. It is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Inflammation is a key factor at all stages of atherosclerosis progression. Cells involved in pathogenesis of atherosclerosis were shown to be activated by soluble factors, cytokines that strongly influence the disease development. Pro-inflammatory cytokines accelerate atherosclerosis progression, while anti-inflammatory cytokines ameliorate the disease. In this review, we discuss the latest findings on the role of cytokines in the development and progression of atherosclerosis.
Summary While commensal flora is involved in the regulation of immunity, the interplay between cytokine signaling and microbiota in atherosclerosis remains unknown. We found that interleukin (IL)-23 and its downstream target IL-22 restricted atherosclerosis by repressing pro-atherogenic microbiota. Inactivation of IL-23-IL-22 signaling led to deterioration of the intestinal barrier, dysbiosis and expansion of pathogenic bacteria with distinct biosynthetic and metabolic properties, causing systemic increase in pro-atherogenic metabolites such as lipopolysaccharide (LPS) and trimethylamine N-oxide (TMAO). Augmented disease in the absence of the IL-23-IL-22 pathway was mediated in part by pro-atherogenic osteopontin, controlled by microbial metabolites. Microbiota transfer from IL-23 deficient mice accelerated atherosclerosis, whereas microbial depletion or IL-22 supplementation reduced inflammation and ameliorated disease. Our work uncovers the IL-23-IL-22 signaling as a regulator of atherosclerosis that restrains expansion of pro-atherogenic microbiota, and argues for informed use of cytokine blockers to avoid cardiovascular side effects driven by microbiota and inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.