The actin-binding protein ACTN4 belongs to a family of actin-binding proteins and is a non-muscle alpha-actinin that has long been associated with cancer development. Numerous clinical studies showed that changes in ACTN4 gene expression are correlated with aggressiveness, invasion, and metastasis in certain tumors. Amplification of the 19q chromosomal region where the gene is located has also been reported. Experimental manipulations with ACTN4 expression further confirmed its involvement in cell proliferation, motility, and epithelial-mesenchymal transition (EMT). However, both clinical and experimental data suggest that the effects of ACTN4 up- or down-regulation may vary a lot between different types of tumors. Functional studies demonstrated its engagement in a number of cytoplasmic and nuclear processes, ranging from cytoskeleton reorganization to regulation of different signaling pathways. Such a variety of functions may be the reason behind cell type and cell line specific responses. Herein, we will review research progress and controversies regarding the prognostic and functional significance of ACTN4 for tumorigenesis.
Alpha-actinin 4 (ACTN4) is an actin-binding protein of the spectrin superfamily. ACTN4 is found both in the cytoplasm and nucleus of eukaryotic cells. The main function of cytoplasmic ACTN4 is stabilization of actin filaments and their binding to focal contacts. Nuclear ACTN4 takes part in the regulation of gene expression following by activation of certain transcription factors, but the mechanisms of regulation are not completely understood. Our previous studies have demonstrated the interaction of ACTN4 with the RelA/p65 subunit of NF-kappaB factor and the effect on its transcriptional activity in A431 and HEK293T cells. In the present work, we investigated changes in the composition of nuclear ACTN4-interacting proteins in non-small cell lung cancer cells H1299 upon stable RELA overexpression. We showed that ACTN4 was present in the nuclei of H1299 cells, regardless of the RELA expression level. The presence of ectopic RelA/p65 in H1299 cells increased the number of proteins interacting with nuclear ACTN4. Stable expression of RELA in these cells suppressed cell proliferation, which was further affected by simultaneous ACTN4 overexpression. We detected no significant effect on cell cycle but the apoptosis rate was increased in cells with a double RELA/ACTN4 overexpression. Interestingly, when expressed individually ACTN4 promoted proliferation of lung cancer cells. Furthermore, the bioinformatics analysis of gene expression in lung cancer patients suggested that overexpression of ACTN4 correlated with poor survival prognosis. We hypothesize that the effect of RELA on proliferation and apoptosis of H1299 cells can be mediated via affecting the interactome of ACTN4.
The p53 protein is a key tumor suppressor in mammals. In response to various forms of genotoxic stress p53 stimulates expression of genes whose products induce cell cycle arrest and/or apoptosis. An E3-ubiquitin ligase, Mdm2 (mouse-double-minute 2) and its human ortholog Hdm2, physically interact with the amino-terminus of p53 to mediate its ubiquitin-mediated degradation via the proteasome. Thus, pharmacological inhibition of the p53-Mdm2 interaction leads to overall stabilization of p53 and stimulation of its anti-tumorigenic activity. In this study we characterize the biological effects of a novel class of non-genotoxic isatin Schiff and Mannich base derivatives (ISMBDs) that stabilize p53 on the protein level. The likely mechanism behind their positive effect on p53 is mediated via the competitive interaction with Mdm2. Importantly, unlike Nutlin, these compounds selectively promoted p53-mediated cell death. These novel pharmacological activators of p53 can serve as valuable molecular tools for probing p53-positive tumors and set up the stage for development of new anti-cancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.