We propose an archetypal system to investigate transitions from smooth to discontinuous dynamics. In the smooth regime, the system bears significant similarities to the Duffing oscillator, exhibiting the standard dynamics governed by the hyperbolic structure associated with the stationary state of the double well. At the discontinuous limit, however, there is a substantial departure in the dynamics from the standard one. In particular, the velocity flow suffers a jump in crossing from one well to another, caused by the loss of local hyperbolicity due to the collapse of the stable and unstable manifolds of the stationary state. In the presence of damping and external excitation, the system has coexisting attractors and also a chaotic saddle which becomes a chaotic attractor when a smoothness parameter drops to zero. This attractor can bifurcate to a high-period periodic attractor or a chaotic sea with islands of quasiperiodic attractors depending on the strength of damping.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
In a recent paper we examined a model of an arch bridge with viscous damping subjected to a sinusoidally varying central load. We showed how this yields a useful archetypal oscillator which can be used to study the transition from smooth to discontinuous dynamics as a parameter, alpha, tends to zero. Decreasing this smoothness parameter (a non-dimensional measure of the span of the arch) changes the smooth load-deflection curve associated with snap-buckling into a discontinuous sawtooth. The smooth snap-buckling curve is not amenable to closed-form theoretical analysis, so we here introduce a piecewise linearization that correctly fits the sawtooth in the limit at alpha=0. Using a Hamiltonian formulation of this linearization, we derive an analytical expression for the unperturbed homoclinic orbit, and make a Melnikov analysis to detect the homoclinic tangling under the perturbation of damping and driving. Finally, a semi-analytical method is used to examine the full nonlinear dynamics of the perturbed piecewise linear system. A chaotic attractor located at alpha=0.2 compares extremely well with that exhibited by the original arch model: the topological structures are the same, and Lyapunov exponents (and dimensions) are in good agreement.
A physical model to examine impact oscillators has been developed and analyzed. The model accounts for the viscoelastic impacts and is capable to mimic the dynamics of a bounded progressive motion (a drift), which is important in practical applications. The system moves forward in stick-slip phases, and its behavior may vary from periodic to chaotic motion. A nonlinear dynamic analysis reveals a complex behavior and that the largest drift is achieved when the responses switch from periodic to chaotic, after a cascade of subcritical bifurcations to period one. Based on this fact, a semianalytical solution is constructed to calculate the progression of the system for periodic regimes and to determine conditions when periodicity is lost.
In this paper, extensive experimental investigations of an impact oscillator with a onesided elastic constraint are presented. Different bifurcation scenarios under varying the excitation frequency near grazing are shown for a number of values of the excitation amplitude. The mass acceleration signal is used to effectively detect contacts with the secondary spring. The most typical recorded scenario is when a non-impacting periodic orbit bifurcates into an impacting one via grazing mechanism. The resulting orbit can be stable, but in many cases it loses stability through grazing. Following such an event, the evolution of the attractor is governed by a complex interplay between smooth and nonsmooth bifurcations. In some cases, the occurrence of coexisting attractors is manifested through discontinuous transition from one orbit to another through boundary crisis. The stability of non-impacting and impacting period-1 orbits is then studied using a newly proposed experimental procedure. The results are compared with the predictions obtained from standard theoretical stability analysis and a good correspondence between them is shown for different stiffness ratios. A mathematical model of a damped impact oscillator with one-sided elastic constraint is used in the theoretical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.