Solution of the practical problems of the ice engineering requires the data about the strength of the ice cover that depends upon its temperature. In most cases, the snow lies on the ice cover and the ice temperature differs from the atmospheric air temperature. To reveal the correlation of the air temperature with temperature on interfaces air-snow and snow-ice, the known in the thermophysics solution of the problem of the heat transfer through the multilayer plate was applied. Derived solution connects the temperature of air and temperature on the snow-ice interface and satisfactory correlates with data of the field measurements of the temperature within snow layer and ice cover and ice thickness on the Heilongjiang (Amur) River. Results of investigation are recommended for the ice temperature evaluation in engineering practice.
For maintenance of navigation during wintertime in Arctic seas, icebreakers create the wide channels in the fast ice cover or pack ice cover at water areas near to ports with intensive vessel traffic. Within such wide channels cargo ships and tankers can move in both directions independently without icebreaker pilotage among small ice floes. Because the cross-sectional dimension of the channel is restricted, the ships are forced to displace from the center and move on a close distance between their board and border of channel. The space between ship hull and borders is filled by small ice floes, and its concentration near the starboard and portside differs. The ice resistance on each board also differs. Therefore, side force and yawing moment arise that are able to cause the collision with the channel border. This paper contains the detailed problem definition and the main points of the mathematical model of vessel interaction with the channel border. As an example of model application possibilities, the simulation of loads on the hull of the vessel was performed. Outcomes of the investigation are dependent upon the side force and yawing moment on the distance from the channel border and ice conditions.