Parkinson disease (PD) is attributed to a proteostasis disorder mediated by α-synuclein accumulating in a specific brain region. PD manifestation is often related to extraneuronal alterations, some of which could be used as diagnostic or prognostic PD biomarkers. In this work, we studied the shifts in the expression of proteostasis-associated chaperones of the HSP70 family and autophagy-dependent p62 protein values in the peripheral blood mononuclear cells (PBMC) of mild to moderate PD patients. Although we did not detect any changes in the intracellular HSP70 protein pool in PD patients compared to non-PD controls, an increase in the transcriptional activity of the stress-associated HSPA1A/B and HSPA6 genes was observed in these cells. Basal p62 content was found to be increased in PD patients’ PBMC, similarly to the p62 level in substantia nigra neural cells in PD. Moreover, the spontaneous apoptosis level was increased among PBMC and positively correlated with the p62 intracellular level in the PD group. A combined HSPA6- and p62-based analysis among 26 PD patients and 36 age-matched non-PD controls pointed out the diagnostic significance of these markers, with intermediate sensitivity and high specificity of this combination when observing patients diagnosed with PD.
Background As gene‐targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial‐ready cohorts is limited. Objective The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD‐linked variants; (2) provide harmonized and quality‐controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. Methods We conducted a worldwide, systematic online survey to collect individual‐level data on individuals with PD‐linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ‐1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype–phenotype relationships were analyzed. Results We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ‐1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published. Conclusions Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD‐linked variants; (2) provide harmonized and quality‐controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene‐targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
No abstract
Parkinson's disease (PD) is one of the most common human neurodegenerative disorders caused by the loss of dopaminergic neurons in the brain. The α-synuclein (SNCA) gene is one of the most studied genes involved in the pathogenesis of PD. In our study, we conducted a genetic analysis of promoter and intron single-nucleotide polymorphisms (SNPs) in the SNCA gene. We also analyzed the association of genotypes of these SNPs with expression levels of SNCA mRNA. One of four SNPs in the SNCA gene, and the rs2736990 polymorphism, associates with the risk of the sporadic form of PD in Russian population. The risk of PD was increased almost twofold in carriers of allele C (odds ratios = 1.9, 95% confidence interval: 1.24-2.91, p = 0.003). However, no association was found between any of the genotypes of SNPs tested (rs2583988, rs2619363, rs2619364 and rs2736990) and alterations in SNCA levels. Our findings support the hypothesis that the rs2736990 polymorphism is associated with PD. SNPs rs2583988, rs2619363 and rs2619364 in the promoter region of the SNCA gene themselves do not significantly influence the expression of SNCA. Most likely, SNCA gene expression is a very complex process that is affected by different genetic and epigenetic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.