Binding free energy (ΔGbind) computation can play an important role in prioritizing compounds to be evaluated experimentally on their affinity for target proteins, yet fast and accurate ΔGbind calculation remains an elusive task. In this study, we compare the performance of two popular end-point methods, i.e., linear interaction energy (LIE) and molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA), with respect to their ability to correlate calculated binding affinities of 27 thieno[3,2-d]pyrimidine-6-carboxamide-derived sirtuin 1 (SIRT1) inhibitors with experimental data. Compared with the standard single-trajectory setup of MM/PBSA, our study elucidates that LIE allows to obtain direct (“absolute”) values for SIRT1 binding free energies with lower compute requirements, while the accuracy in calculating relative values for ΔGbind is comparable (Pearson’s r = 0.72 and 0.64 for LIE and MM/PBSA, respectively). We also investigate the potential of combining multiple docking poses in iterative LIE models and find that Boltzmann-like weighting of outcomes of simulations starting from different poses can retrieve appropriate binding orientations. In addition, we find that in this particular case study the LIE and MM/PBSA models can be optimized by neglecting the contributions from electrostatic and polar interactions to the ΔGbind calculations.
Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein–ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein–ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.Electronic supplementary materialThe online version of this article (doi:10.1007/s10822-017-0055-0) contains supplementary material, which is available to authorized users.
BackgroundComputational methods to predict binding affinities of small ligands toward relevant biological (off-)targets are helpful in prioritizing the screening and synthesis of new drug candidates, thereby speeding up the drug discovery process. However, use of ligand-based approaches can lead to erroneous predictions when structural and dynamic features of the target substantially affect ligand binding. Free energy methods for affinity computation can include steric and electrostatic protein–ligand interactions, solvent effects, and thermal fluctuations, but often they are computationally demanding and require a high level of supervision. As a result their application is typically limited to the screening of small sets of compounds by experts in molecular modeling. ResultsWe have developed eTOX ALLIES, an open source framework that allows the automated prediction of ligand-binding free energies requiring the ligand structure as only input. eTOX ALLIES is based on the linear interaction energy approach, an efficient end-point free energy method derived from Free Energy Perturbation theory. Upon submission of a ligand or dataset of compounds, the tool performs the multiple steps required for binding free-energy prediction (docking, ligand topology creation, molecular dynamics simulations, data analysis), making use of external open source software where necessary. Moreover, functionalities are also available to enable and assist the creation and calibration of new models. In addition, a web graphical user interface has been developed to allow use of free-energy based models to users that are not an expert in molecular modeling.ConclusionsBecause of the user-friendliness, efficiency and free-software licensing, eTOX ALLIES represents a novel extension of the toolbox for computational chemists, pharmaceutical scientists and toxicologists, who are interested in fast affinity predictions of small molecules toward biological (off-)targets for which protein flexibility, solvent and binding site interactions directly affect the strength of ligand-protein binding.Electronic supplementary materialThe online version of this article (10.1186/s13321-017-0243-x) contains supplementary material, which is available to authorized users.
Calculating free energies of binding (ΔG bind ) between ligands and their target protein is of major interest to drug discovery and safety, yet it is still associated with several challenges and difficulties. Linear interaction energy (LIE) is an efficient in silico method for ΔG bind computation. LIE models can be trained and used to directly calculate binding affinities from interaction energies involving ligands in the bound and unbound states only, and LIE can be combined with statistical weighting to calculate ΔG bind for flexible proteins that may bind their ligands in multiple orientations. Here, we investigate if LIE predictions can be effectively improved by explicitly including the entropy of (de)solvation into our free-energy calculations. For that purpose, we combine LIE calculations for the protein−ligand-bound state with explicit free-energy perturbation to rigorously compute the unbound ligand's solvation free energy. We show that for 28 Cytochrome P450 2A6 (CYP2A6) ligands, coupling LIE with alchemical solvation free-energy calculation helps to improve obtained correlation between computed and reference (experimental) binding data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.