Accurate determination
of the binding affinity of the ligand to
the receptor remains a difficult problem in computer-aided drug design.
Here, we study and compare the efficiency of Jarzynski’s equality
(JE) combined with steered molecular dynamics and the linear interaction
energy (LIE) method by assessing the binding affinity of 23 small
compounds to six receptors, including β-lactamase, thrombin,
factor Xa, HIV-1 protease (HIV), myeloid cell leukemia-1, and cyclin-dependent
kinase 2 proteins. It was shown that Jarzynski’s nonequilibrium
binding free energy Δ
G
neq
Jar
correlates with the available
experimental data with the correlation levels
R
=
0.89, 0.86, 0.83, 0.80, 0.83, and 0.81 for six data sets, while for
the binding free energy Δ
G
LIE
obtained
by the LIE method, we have
R
= 0.73, 0.80, 0.42,
0.23, 0.85, and 0.01. Therefore, JE is recommended to be used for
ranking binding affinities as it provides accurate and robust results.
In contrast, LIE is not as reliable as JE, and it should be used with
caution, especially when it comes to new systems.