BackgroundArtemisinin-based combination therapy (ACT) is the first-line malaria treatment throughout most of the malaria-endemic world. Data on ACT availability, price and market share are needed to provide a firm evidence base from which to assess the current situation concerning quality-assured ACT supply. This paper presents supply side data from ACTwatch outlet surveys in Benin, the Democratic Republic of Congo (DRC), Madagascar, Nigeria, Uganda and Zambia.MethodsBetween March 2009 and June 2010, nationally representative surveys of outlets providing anti-malarials to consumers were conducted. A census of all outlets with the potential to provide anti-malarials was conducted in clusters sampled randomly.Results28,263 outlets were censused, 51,158 anti-malarials were audited, and 9,118 providers interviewed. The proportion of public health facilities with at least one first-line quality-assured ACT in stock ranged between 43% and 85%. Among private sector outlets stocking at least one anti-malarial, non-artemisinin therapies, such as chloroquine and sulphadoxine-pyrimethamine, were widely available (> 95% of outlets) as compared to first-line quality-assured ACT (< 25%). In the public/not-for-profit sector, first-line quality-assured ACT was available for free in all countries except Benin and the DRC (US$1.29 [Inter Quartile Range (IQR): $1.29-$1.29] and $0.52[IQR: $0.00-$1.29] per adult equivalent dose respectively). In the private sector, first-line quality-assured ACT was 5-24 times more expensive than non-artemisinin therapies. The exception was Madagascar where, due to national social marketing of subsidized ACT, the price of first-line quality-assured ACT ($0.14 [IQR: $0.10, $0.57]) was significantly lower than the most popular treatment (chloroquine, $0.36 [IQR: $0.36, $0.36]). Quality-assured ACT accounted for less than 25% of total anti-malarial volumes; private-sector quality-assured ACT volumes represented less than 6% of the total market share. Most anti-malarials were distributed through the private sector, but often comprised non-artemisinin therapies, and in the DRC and Nigeria, oral artemisinin monotherapies. Provider knowledge of the first-line treatment was significantly lower in the private sector than in the public/not-for-profit sector.ConclusionsThese standardized, nationally representative results demonstrate the typically low availability, low market share and high prices of ACT, in the private sector where most anti-malarials are accessed, with some exceptions. The results confirm that there is substantial room to improve availability and affordability of ACT treatment in the surveyed countries. The data will also be useful for monitoring the impact of interventions such as the Affordable Medicines Facility for malaria.
BackgroundAccess to artemisinin-based combination therapy (ACT) remains limited in high malaria-burden countries, and there are concerns that the poorest people are particularly disadvantaged. This paper presents new evidence on household treatment-seeking behaviour in six African countries. These data provide a baseline for monitoring interventions to increase ACT coverage, such as the Affordable Medicines Facility for malaria (AMFm).MethodsNationally representative household surveys were conducted in Benin, the Democratic Republic of Congo (DRC), Madagascar, Nigeria, Uganda and Zambia between 2008 and 2010. Caregivers responded to questions about management of recent fevers in children under five. Treatment indicators were tabulated across countries, and differences in case management provided by the public versus private sector were examined using chi-square tests. Logistic regression was used to test for association between socioeconomic status and 1) malaria blood testing, and 2) ACT treatment.ResultsFever treatment with an ACT is low in Benin (10%), the DRC (5%), Madagascar (3%) and Nigeria (5%), but higher in Uganda (21%) and Zambia (21%). The wealthiest children are significantly more likely to receive ACT compared to the poorest children in Benin (OR = 2.68, 95% CI = 1.12-6.42); the DRC (OR = 2.18, 95% CI = 1.12-4.24); Madagascar (OR = 5.37, 95% CI = 1.58-18.24); and Nigeria (OR = 6.59, 95% CI = 2.73-15.89). Most caregivers seek treatment outside of the home, and private sector outlets are commonly the sole external source of treatment (except in Zambia). However, children treated in the public sector are significantly more likely to receive ACT treatment than those treated in the private sector (except in Madagascar). Nonetheless, levels of testing and ACT treatment in the public sector are low. Few caregivers name the national first-line drug as most effective for treating malaria in Madagascar (2%), the DRC (2%), Nigeria (4%) and Benin (10%). Awareness is higher in Zambia (49%) and Uganda (33%).ConclusionsLevels of effective fever treatment are low and inequitable in many contexts. The private sector is frequently accessed however case management practices are relatively poor in comparison with the public sector. Supporting interventions to inform caregiver demand for ACT and to improve provider behaviour in both the public and private sectors are needed to achieve maximum gains in the context of improved access to effective treatment.
There is a need for state level implementation of specific programmes that target vulnerable children as this can help in reversing the existing patterns.
BackgroundMalaria during pregnancy is a major public health problem in Nigeria leading to increase in the risk of maternal mortality, low birth weight and infant mortality. This paper is aimed at highlighting key predictors of the ownership of insecticide treated nets (ITNs) and its use among pregnant women in Nigeria.MethodsA total of 2348 pregnant women were selected by a multi-stage probability sampling technique. Structured interview schedule was used to elicit information on socio-demographic characteristics, ITN ownership, use, knowledge, behaviour and practices. Logistic regression was used to detect predictors of two indicators: ITN ownership, and ITN use in pregnancy among those who owned ITNs.ResultsITN ownership was low; only 28.8% owned ITNs. Key predictors of ITN ownership included women who knew that ITNs prevent malaria (OR = 3.85; p < 0001); and registration at antenatal clinics (OR = 1.34; p = 0.003). The use of ITNs was equally low with only 7.5% of all pregnant women, and 25.7% of all pregnant women who owned ITNs sleeping under a net. The predictors of ITN use in pregnancy among women who owned ITNs (N = 677) identified by logistic regression were: urban residence (OR = 1.87; p = 0.001); knowledge that ITNs prevent malaria (OR = 2.93; p < 0001) and not holding misconceptions about malaria prevention (OR = 1.56; p = 0.036). Educational level was not significantly related to any of the two outcome variables. Although registration at ANC is significantly associated with ownership of a bednet (perhaps through free ITN distribution) this does not translate to significant use of ITNs.ConclusionsITN use lagged well behind ITN ownership. This seems to suggest that the current mass distribution of ITNs at antenatal facilities and community levels may not necessarily lead to use unless it is accompanied by behaviour change interventions that address the community level perceptions, misconceptions and positively position ITN as an effective prevention device to prevent malaria
BackgroundPrivate for-profit outlets are important treatment sources for malaria in most endemic countries. However, these outlets constitute only the last link in a chain of businesses that includes manufacturers, importers and wholesalers, all of which influence the availability, price and quality of antimalarials patients can access. We present evidence on the composition, characteristics and operation of these distribution chains and of the businesses that comprise them in six endemic countries (Benin, Cambodia, Democratic Republic of Congo, Nigeria, Uganda and Zambia).Methods and FindingsWe conducted nationally representative surveys of antimalarial wholesalers during 2009–2010 using an innovative sampling approach that captured registered and unregistered distribution channels, complemented by in-depth interviews with a range of stakeholders. Antimalarial distribution chains were pyramidal in shape, with antimalarials passing through a maximum of 4–6 steps between manufacturer and retailer; however, most likely pass through 2–3 steps. Less efficacious non-artemisinin therapies (e.g. chloroquine) dominated weekly sales volumes among African wholesalers, while volumes for more efficacious artemisinin-based combination therapies (ACTs) were many times smaller. ACT sales predominated only in Cambodia. In all countries, consumer demand was the principal consideration when selecting products to stock. Selling prices and reputation were key considerations regarding supplier choice. Business practices varied across countries, with large differences in the proportions of wholesalers offering credit and delivery services to customers, and the types of distribution models adopted by businesses. Regulatory compliance also varied across countries, particularly with respect to licensing. The proportion of wholesalers possessing any up-to-date licence from national regulators was lowest in Benin and Nigeria, where vendors in traditional markets are important antimalarial supply sources.ConclusionsThe structure and characteristics of antimalarial distribution chains vary across countries; therefore, understanding the wholesalers that comprise them should inform efforts aiming to improve access to quality treatment through the private sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.