On 31 December 2019, the World Health Organization (WHO) was notified of a novel coronavirus disease in China that was later named COVID-19. On 11 March 2020, the outbreak of COVID-19 was declared a pandemic. The first instance of the virus in Nigeria was documented on 27 February 2020. This study provides a preliminary epidemiological analysis of the first 45 days of COVID-19 outbreak in Nigeria. We estimated the early transmissibility via time-varying reproduction number based on the Bayesian method that incorporates uncertainty in the distribution of serial interval (time interval between symptoms onset in an infected individual and the infector), and adjusted for disease importation. By 11 April 2020, 318 confirmed cases and 10 deaths from COVID-19 have occurred in Nigeria. At day 45, the exponential growth rate was 0.07 (95% confidence interval (CI): 0.05-0.10) with a doubling time of 9.84 days (95% CI: 7.28-15.18). Separately for imported cases (travel-related) and local cases, the doubling time was 12.88 days and 2.86 days, respectively. Furthermore, we estimated the reproduction number for each day of the outbreak using a three-weekly window while adjusting for imported cases. The estimated reproduction number was 4.98 (95% CrI: 2.65-8.41) at day 22 (19 March 2020), peaking at 5.61 (95% credible interval (CrI): 3.83-7.88) at day 25 (22 March 2020). The median reproduction number over the study period was 2.71 and the latest value on 11 April 2020, was 1.42 (95% CrI: 1.26-1.58). These 45-day estimates suggested that cases of COVID-19 in Nigeria have been remarkably lower than expected and the preparedness to detect needs to be shifted to stop local transmission.
There is a need for state level implementation of specific programmes that target vulnerable children as this can help in reversing the existing patterns.
Corona virus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first detected in the city of Wuhan, China in December 2019. Although, the disease appeared in Africa later than other regions, it has now spread to virtually all countries on the continent. We provide early spatio-temporal dynamics of COVID-19 within the first 62 days of the disease's appearance on the African continent. We used a two-parameter hurdle Poisson model to simultaneously analyse the zero counts and the frequency of occurrence. We investigate the effects of important healthcare capacities including hospital beds and number of medical doctors in different countries. The results show that cases of the pandemic vary geographically across Africa with notably high incidence in neighbouring countries particularly in West and North Africa. The burden of the disease (per 100 000) mostly impacted Djibouti, Tunisia, Morocco and Algeria. Temporally, during the first 4 weeks, the burden was highest in Senegal, Egypt and Mauritania, but by mid-April it shifted to Somalia, Chad, Guinea, Tanzania, Gabon, Sudan and Zimbabwe. Currently, Namibia, Angola, South Sudan, Burundi and Uganda have the least burden. These findings could be useful in guiding epidemiological interventions and the allocation of scarce resources based on heterogeneity of the disease patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.