This paper deals with nonlinear free axisymmetric vibrations of functionally graded thin circular plates whose properties vary through its thickness. The inhomogeneity of the plate is characterized by a power law variation of the Young’s modulus and mass density of the material along the thickness direction, whereas Poisson’s ratio is assumed to be constant. The theoretical model is based on Hamilton’s principle and spectral analysis using a basis of admissible Bessel’s functions to yield the frequencies of the circular plates under clamped boundary conditions on the basis of the classical plate theory. The large vibration amplitudes problem, reduced to a set of non-linear algebraic equations, is solved numerically. The non-linear to linear frequency ratios are presented for various values of the volume fraction index n showing hardening type non-linearity. The distribution of the radial bending stress associated to the non-linear mode shape is also given for various vibration amplitudes, and is compared with those predicted by the linear theory.
The geometrically non-linear axisymmetric free vibration of functionally graded annular plate (FGAP) having both edges clamped is analyzed in this paper. The material properties of the constituents are assumed to be temperature-independent and the effective properties of FGAP are graded in thickness direction according to a simple power law function in terms of the volume fractions. Based on the classical Plate theory and von Karman type non-linear strain-displacement relationships, the nonlinear governing equations of motion are derived using Hamilton’s principle. The problem is solved by a numerical iterative procedure in order to obtain more accurate results for vibration amplitudes up to twice the plate thickness. The numerical results are given for the first two axisymmetric non-linear mode shapes, for a wide range of vibration amplitudes and they are presented either in a tabular or in a graphical form, to show the significant effects that the large vibration amplitudes and the variation in material properties have on the non-linear frequencies and the associated bending stresses of the FGAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.