The linear and geometrically nonlinear free and forced vibrations of Euler-Bernoulli beams with multicracks are investigated using the crack equivalent rotational spring model and the beam transfer matrix method. The Newton Raphson solution of the transcendental frequency equation corresponding to the linear case leads to the cracked beam linear frequencies and mode shapes. Considering the nonlinear case, the beam transverse displacement is expanded as a series of the linear modes calculated before. Using the discretised equation is obtained and solved using the so-called second formulation, developed previously for similar nonlinear structural dynamic problems, to obtain the multi-cracked beam backbone curves and the corresponding amplitude dependent nonlinear mode shapes. Considering the forced vibration case, the nonlinear frequency response functions obtained numerically near to the fundamental nonlinear mode using a single mode approach show the effects of the number of cracks, their locations and depths, and the level of the concentric harmonic force. The inverse problem is explored using the frequency contour plot method to identify crack parameters, such as the crack locations and depths. Satisfactory comparisons are made with previous analytical results.
Geometrically non-linear vibrations of functionally graded Euler-Bernoulli beams with multi-cracks, subjected to a harmonic distributed force, are examined in this paper using a theoretical model based on Hamilton's principle and spectral analysis. The homogenisation procedure is performed, based on the neutral surface approach, and reduces the FG beams analysis to that of an equivalent homogeneous multi-cracked beam. The so-called multidimensional Duffing equation obtained and solved using a simplified method (second formulation) previously applied to various non-linear structural vibration problems. The curvature distributions associated to the multi-cracked beam forced deflection shapes are obtained for each value of the excitation level and frequency. The parametric study performed in the case of a beam and the detailed numerical results are given in hand to demonstrate the effectiveness of the proposed procedure, and in the other hand conducted to analyse many effects such as the beam material property, the presence of crack, the vibration amplitudes and the applied harmonic force on the non-linear dynamic behaviour of FG beams.
The problem of geometrically nonlinear free vibration of a clamped-clamped functionally graded beam containing an open edge crack in its center is studied in this paper. The study is based on Euler-Bernoulli beam theory and Von Karman geometric nonlinearity assumptions. The cracked section is modeled by an elastic spring connecting two intact segments of the beam. It is assumed that material properties of the functionally graded composites are graded in the thickness direction and estimated through the rule of mixture. The homogenisation method is used to reduce the problem to that of isotropic homogeneous cracked beam. Direct iterative method is employed for solving the eigenvalue equation for governing the frequency nonlinear vibration, in order to show the effect of the crack depth and the influences of the volume fraction on the dynamic response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.