In this paper we introduce a new type of folding called equi-Gaussian curvature folding of connected Riemannian 2-manifolds. We prove that the composition and the cartesian product of such foldings is again an equi-Gaussian curvature folding. In case of equi-Gaussian curvature foldings, f : M → P n , of an orientable surface M onto a polygon P n we prove thatand we generalize (iii) for #nT 2 .
In our previous work (2002), we proved that an essential second-order hypersurface in an infinite-dimensional locally affine Riemannian Banach manifold is a Riemannian manifold of constant nonzero curvature. In this note, we prove the converse, in other words, we prove that a hypersurface of constant nonzero Riemannian curvature in a locally affine (flat) semi-Riemannian Banach space is an essential hypersurface of second order.
We prove that an essential hypersurface of second order in an infinite-dimensional locally affine Riemannian Banach manifold is a Riemannian manifold of constant nonzero curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.