In our previous work (2002), we proved that an essential second-order hypersurface in an infinite-dimensional locally affine Riemannian Banach manifold is a Riemannian manifold of constant nonzero curvature. In this note, we prove the converse, in other words, we prove that a hypersurface of constant nonzero Riemannian curvature in a locally affine (flat) semi-Riemannian Banach space is an essential hypersurface of second order.
Two submanifolds of Euclidean n-space E n are called super parallel if the affine normal spaces are homothetic at the corresponding points. Characterizations are given for the action of conformal transformation on super parallel mates. Our notion is generalized to super transnormal submanifolds and its relation with super self-parallel submanifolds and convex super self-parallel submanifolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.