Automatic modulation classification (AMC) is an important stage in intelligent wireless communication receivers. It is a necessary process after signal detection, and before demodulation. It plays a vital role in various applications. Blind modulation classification is a very difficult task without information about the transmitted signal and the receiver parameters like carrier frequency, signal power, timing information, phase offset, existence of frequency-selective multipath fading, and time-varying channels in real-world applications. The AMC methods are divided into traditional and advanced methods. Traditional methods include likelihood-based (LB) and feature-based (FB) methods. The advanced methods include deep learning (DL) methods. In addition, the AMC methods are used to classify different modulation schemes such as ASK, PSK, FSK, PAM, and QAM with different orders and different signal-to-noise ratios (SNRs). This paper focuses on summarizing the AMC methoods, comparing between them, presenting the commercial software packages for AMC, and finally considering the new challenges in the implementation of AMC. K E Y W O R D S automatic modulation classification (AMC), deep learning (DL), feature-based (FB) methods, likelihood-based (LB) methods | INTRODUCTIONAutomatic modulation classification (AMC) is important in wireless communication systems used in military and civilian applications to enhance the efficiency of the spectrum utilization, redue the overhead, and resolve the shortage problems. Unfortunately, the restricted spectrum resources barely satisfy the ever-increasing demand for 5G 1,2 and Internet of Things (IoT) networks. 3 The AMC can be used for better management of the available spectrum. A simple block diagram of a communication system based on AMC is presented in Figure 1. 4 The AMC architecture contains two steps: signal preprocessing and a proper algorithm for classification. The preprocessing tasks involve reduction of noise, carrier frequency estimation, symbol period estimation, equalization, and signal power evaluation. On the other hand, the AMC methods comprise traditional methods including decisiontheoretic methods and feature-based methods 4,5 along with advanced methods 6 as shown in Figure 2.
Effective medical diagnosis is dramatically expensive, especially in third-world countries. One of the common diseases is pneumonia, and because of the remarkable similarity between its types and the limited number of medical images for recent diseases related to pneumonia, the medical diagnosis of these diseases is a significant challenge. Hence, transfer learning represents a promising solution in transferring knowledge from generic tasks to specific tasks. Unfortunately, experimentation and utilization of different models of transfer learning do not achieve satisfactory results. In this study, we suggest the implementation of an automatic detection model, namely CADTra, to efficiently diagnose pneumonia-related diseases. This model is based on classification, denoising autoencoder, and transfer learning. Firstly, pre-processing is employed to prepare the medical images. It depends on an autoencoder denoising (AD) algorithm with a modified loss function depending on a Gaussian distribution for decoder output to maximize the chances for recovering inputs and clearly demonstrate their features, in order to improve the diagnosis process. Then, classification is performed using a transfer learning model and a four-layer convolution neural network (FCNN) to detect pneumonia. The proposed model supports binary classification of chest computed tomography (CT) images and multi-class classification of chest X-ray images. Finally, a comparative study is introduced for the classification performance with and without the denoising process. The proposed model achieves precisions of 98% and 99% for binary classification and multi-class classification, respectively, with the different ratios for training and testing. To demonstrate the efficiency and superiority of the proposed CADTra model, it is compared with some recent state-of-the-art CNN models. The achieved outcomes prove that the suggested model can help radiologists to detect pneumonia-related diseases
This article is mainly concerned with COVID-19 diagnosis from X-ray images. The number of cases infected with COVID-19 is increasing daily, and there is a limitation in the number of test kits needed in hospitals. Therefore, there is an imperative need to implement an efficient automatic diagnosis system to alleviate COVID-19 spreading among people. This article presents a discussion of the utilization of convolutional neural network (CNN) models with different learning strategies for automatic COVID-19 diagnosis. First, we consider the CNN-based transfer learning approach for automatic diagnosis of COVID-19 from X-ray images with different training and testing ratios. Different pre-trained deep learning models in addition to a transfer learning model are considered and compared for the task of COVID-19 detection from X-ray images. Confusion matrices of these studied models are presented and analyzed. Considering the performance results obtained, ResNet models (ResNet18, ResNet50, and ResNet101) provide the highest classification accuracy on the two considered datasets with different training and testing ratios, namely 80/20, 70/30, 60/40, and 50/50. The accuracies obtained using the first dataset with 70/30 training and testing ratio are 97.67%, 98.81%, and 100% for ResNet18, ResNet50, and ResNet101, respectively. For the second dataset, the reported accuracies are 99%, 99.12%, and 99.29% for ResNet18, ResNet50, and ResNet101, respectively. The second approach is the training of a proposed CNN model from scratch. The results confirm that training of the CNN from scratch can lead to the identification of the signs of COVID-19 disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.