Evidence both from animal and human studies suggests that common polymorphisms in the oxytocin receptor (OXTR) gene are likely candidates to confer risk for autism spectrum disorders (ASD). In lower mammals, oxytocin is important in a wide range of social behaviors, and recent human studies have shown that administration of oxytocin modulates behavior in both clinical and non-clinical groups. Additionally, two linkage studies and two recent association investigations also underscore a possible role for the OXTR gene in predisposing to ASD. We undertook a comprehensive study of all 18 tagged SNPs across the entire OXTR gene region identified using HapMap data and the Haploview algorithm. Altogether 152 subjects diagnosed with ASDs (that is, DSM IV autistic disorder or pervasive developmental disorder-NOS) from 133 families were genotyped (parents and affected siblings). Both individual SNPs and haplotypes were tested for association using family-based association tests as provided in the UNPHASED set of programs. Significant association with single SNPs and haplotypes (global P-values < 0.05, following permutation test adjustment) were observed with ASD. Association was also observed with IQ and the Vineland Adaptive Behavior Scales (VABS). In particular, a five-locus haplotype block (rs237897-rs13316193-rs237889-rs2254298-rs2268494) was significantly associated with ASD (nominal global P = 0.000019; adjusted global P = 0.009) and a single haplotype (carried by 7% of the population) within that block showed highly significant association (P = 0.00005). This is the third association study, in a third ethnic group, showing that SNPs and haplotypes in the OXTR gene confer risk for ASD. The current investigation also shows association with IQ and total VABS scores (as well as the communication, daily living skills and socialization subdomains), suggesting that this gene shapes both cognition and daily living skills that may cross diagnostic boundaries.
Human altruism is a widespread phenomenon that puzzled evolutionary biologists since Darwin. Economic games illustrate human altruism by showing that behavior deviates from economic predictions of profit maximization. A game that most plainly shows this altruistic tendency is the Dictator Game. We hypothesized that human altruistic behavior is to some extent hardwired and that a likely candidate that may contribute to individual differences in altruistic behavior is the arginine vasopressin 1a (AVPR1a) receptor that in some mammals such as the vole has a profound impact on affiliative behaviors. In the current investigation, 203 male and female university students played an online version of the Dictator Game, for real money payoffs. All subjects and their parents were genotyped for AVPR1a RS1 and RS3 promoter-region repeat polymorphisms. Parents did not participate in online game playing. As variation in the length of a repetitive element in the vole AVPR1a promoter region is associated with differences in social behavior, we examined the relationship between RS1 and RS3 repeat length (base pairs) and allocation sums. Participants with short versions (308-325 bp) of the AVPR1a RS3 repeat allocated significantly (likelihood ratio 5 14.75, P 5 0.001, df 5 2) fewer shekels to the 'other' than participants with long versions (327-343 bp). We also implemented a family-based association test, UNPHASED, to confirm and validate the correlation between the AVPR1a RS3 repeat and monetary allocations in the dictator game. Dictator game allocations were significantly associated with the RS3 repeat (global P value: likelihood ratio x 2 5 11.73, df 5 4, P 5 0.019). The association between the AVPR1a RS3 repeat and altruism was also confirmed using two selfreport scales (the Bardi-Schwartz Universalism and Benevolence Value-expressive Behavior scales). RS3 long alleles were associated with higher scores on both measures. Finally, long AVPR1a RS3 repeats were associated with higher AVPR1a human post-mortem hippocampal messenger RNA levels than short RS3 repeats (one-way analysis of variance (ANOVA): F 5 15.04, P 5 0.001, df 5 14) suggesting a functional molecular genetic basis for the observation that participants with the long RS3 repeats allocate more money than participants with the short repeats. This is the first investigation showing that a common human polymorphism, with antecedents in lower mammals, contributes to decision making in an economic game. The finding that the same gene contributing to social bonding in lower animals also appears to operate similarly in human behavior suggests a common evolutionary mechanism.
BackgroundEconomic games observe social decision making in the laboratory that involves real money payoffs. Previously we have shown that allocation of funds in the Dictator Game (DG), a paradigm that illustrates costly altruistic behavior, is partially determined by promoter-region repeat region variants in the arginine vasopressin 1a receptor gene (AVPR1a). In the current investigation, the gene encoding the related oxytocin receptor (OXTR) was tested for association with the DG and a related paradigm, the Social Values Orientation (SVO) task.Methodology/Principal FindingsAssociation (101 male and 102 female students) using a robust-family based test between 15 single tagging SNPs (htSNPs) across the OXTR was demonstrated with both the DG and SVO. Three htSNPs across the gene region showed significant association with both of the two games. The most significant association was observed with rs1042778 (p = 0.001). Haplotype analysis also showed significant associations for both DG and SVO. Following permutation test adjustment, significance was observed for 2–5 locus haplotypes (p<0.05). A second sample of 98 female subjects was subsequently and independently recruited to play the dictator game and was genotyped for the three significant SNPs found in the first sample. The rs1042778 SNP was shown to be significant for the second sample as well (p = 0.004, Fisher's exact test).ConclusionsThe demonstration that genetic polymorphisms for the OXTR are associated with human prosocial decision making converges with a large body of animal research showing that oxytocin is an important social hormone across vertebrates including Homo sapiens. Individual differences in prosocial behavior have been shown by twin studies to have a substantial genetic basis and the current investigation demonstrates that common variants in the oxytocin receptor gene, an important element of mammalian social circuitry, underlie such individual differences.
Dancing, which is integrally related to music, likely has its origins close to the birth of Homo sapiens, and throughout our history, dancing has been universally practiced in all societies. We hypothesized that there are differences among individuals in aptitude, propensity, and need for dancing that may partially be based on differences in common genetic polymorphisms. Identifying such differences may lead to an understanding of the neurobiological basis of one of mankind's most universal and appealing behavioral traits—dancing. In the current study, 85 current performing dancers and their parents were genotyped for the serotonin transporter (SLC6A4: promoter region HTTLPR and intron 2 VNTR) and the arginine vasopressin receptor 1a (AVPR1a: promoter microsatellites RS1 and RS3). We also genotyped 91 competitive athletes and a group of nondancers/nonathletes (n = 872 subjects from 414 families). Dancers scored higher on the Tellegen Absorption Scale, a questionnaire that correlates positively with spirituality and altered states of consciousness, as well as the Reward Dependence factor in Cloninger's Tridimensional Personality Questionnaire, a measure of need for social contact and openness to communication. Highly significant differences in AVPR1a haplotype frequencies (RS1 and RS3), especially when conditional on both SLC6A4 polymorphisms (HTTLPR and VNTR), were observed between dancers and athletes using the UNPHASED program package (Cocaphase: likelihood ratio test [LRS] = 89.23, p = 0.000044). Similar results were obtained when dancers were compared to nondancers/nonathletes (Cocaphase: LRS = 92.76, p = 0.000024). These results were confirmed using a robust family-based test (Tdtphase: LRS = 46.64, p = 0.010). Association was also observed between Tellegen Absorption Scale scores and AVPR1a (Qtdtphase: global chi-square = 26.53, p = 0.047), SLC6A4 haplotypes (Qtdtphase: chi-square = 2.363, p = 0.018), and AVPR1a conditional on SCL6A4 (Tdtphase: LRS = 250.44, p = 0.011). Similarly, significant association was observed between Tridimensional Personality Questionnaire Reward Dependence scores and AVPR1a RS1 (chi-square = 20.16, p = 0.01). Two-locus analysis (RS1 and RS3 conditional on HTTLPR and VNTR) was highly significant (LRS = 162.95, p = 0.001). Promoter repeat regions in the AVPR1a gene have been robustly demonstrated to play a role in molding a range of social behaviors in many vertebrates and, more recently, in humans. Additionally, serotonergic neurotransmission in some human studies appears to mediate human religious and spiritual experiences. We therefore hypothesize that the association between AVPR1a and SLC6A4 reflects the social communication, courtship, and spiritual facets of the dancing phenotype rather than other aspects of this complex phenotype, such as sensorimotor integration.
Increasing evidence suggests that two nonapeptides, arginine vasopressin and oxytocin, shape human social behavior in both nonclinical and clinical subjects. Evidence is discussed that in autism spectrum disorders genetic polymorphisms in the vasopressin-oxytocin pathway, notably the arginine vasopressin receptor 1a (AVPR1a), the oxytocin receptor (OXTR), neurophysin I and II, and CD38 (recently shown to be critical for social behavior by mediating oxytocin secretion) contribute to deficits in socialization skills in this group of patients. We also present first evidence that CD38 expression in lymphoblastoid cells derived from subjects diagnosed with autism is correlated with social skill phenotype inventoried by the Vineland Adaptive Behavioral Scales. Additionally, we discuss molecular genetic evidence that in nonclinical subjects both AVPR1a and OXTR genes contribute to prosocial or altruistic behavior inventoried by two experimental paradigms, the dictator game and social values orientation. The role of the AVPR1a is also analyzed in prepulse inhibition. Prepulse inhibition of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. First results are presented showing that intranasal administration of arginine vasopressin increases salivary cortisol levels in the Trier Social Stress test. To summarize, accumulating studies employing a broad array of cutting-edge tools in psychology, neuroeconomics, molecular genetics, pharmacology, electrophysiology, and brain imaging are beginning to elaborate the intriguing role of oxytocin and arginine vasopressin in human social behavior. We expect that future studies will continue this advance and deepen our understanding of these complex events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.