Evidence both from animal and human studies suggests that common polymorphisms in the oxytocin receptor (OXTR) gene are likely candidates to confer risk for autism spectrum disorders (ASD). In lower mammals, oxytocin is important in a wide range of social behaviors, and recent human studies have shown that administration of oxytocin modulates behavior in both clinical and non-clinical groups. Additionally, two linkage studies and two recent association investigations also underscore a possible role for the OXTR gene in predisposing to ASD. We undertook a comprehensive study of all 18 tagged SNPs across the entire OXTR gene region identified using HapMap data and the Haploview algorithm. Altogether 152 subjects diagnosed with ASDs (that is, DSM IV autistic disorder or pervasive developmental disorder-NOS) from 133 families were genotyped (parents and affected siblings). Both individual SNPs and haplotypes were tested for association using family-based association tests as provided in the UNPHASED set of programs. Significant association with single SNPs and haplotypes (global P-values < 0.05, following permutation test adjustment) were observed with ASD. Association was also observed with IQ and the Vineland Adaptive Behavior Scales (VABS). In particular, a five-locus haplotype block (rs237897-rs13316193-rs237889-rs2254298-rs2268494) was significantly associated with ASD (nominal global P = 0.000019; adjusted global P = 0.009) and a single haplotype (carried by 7% of the population) within that block showed highly significant association (P = 0.00005). This is the third association study, in a third ethnic group, showing that SNPs and haplotypes in the OXTR gene confer risk for ASD. The current investigation also shows association with IQ and total VABS scores (as well as the communication, daily living skills and socialization subdomains), suggesting that this gene shapes both cognition and daily living skills that may cross diagnostic boundaries.
Both chronic stress in adulthood and episodes of stress in the early postnatal period have been shown to interfere with neuronal development in limbic prefrontal cortical regions. The present study in rats showed for the first time that the development of layer II/III pyramidal neurons in the dorsal anterior cingulate (ACd) and orbitofrontal cortex (OFC) is significantly affected in offspring of mothers exposed to stress during pregnancy. In prenatally stressed (PS) male rat pups the ACd and OFC showed significantly lower spine densities on the apical dendrite (ACd, -20%; OFC, -25%), on basal dendrites reduced spine densities where found only in the OFC (-20% in PS males). Moreover, in both cortical areas a significant reduction of dendritic length was observed in PS males compared to control offspring, which was confined to the apical dendrites (ACd, -30%, OFC, -26%). Sholl analysis revealed that these alterations were accompanied by a significantly reduced complexity of the dendritic trees in both cortical regions. PS females displayed reductions of dendritic spine densities in the ACd and OFC on both the basal (ACd, -21%; OFC, -20%) and apical dendrites (ACd, -21%; OFC, -21%), however, in contrast to the findings in PS males, no dendritic atrophy was detected in the PS females. These findings demonstrate that gestational stress leads to significant alterations of prefrontal neuronal structure in the offspring of the stressed mothers in a sex-specific manner.
We examined three microsatellites in the arginine vasopressin 1a receptor gene (AVPR1a), two in the promoter region (RS1 and RS3) and an intronic microsatellite (AVR), for association with autism as well as scores on the Vineland Adaptive Behavior Scale (VABS), the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Scale-Generic (ADOS-G), measures that are widely used to diagnose autism spectrum disorders. We tested for association between the AVPR1a microsatellites and autism in 116 families (128 probands diagnosed with the ADI-R and ADOS-G using a family-based association test (UNPHASED)). Testing each individual microsatellite showed significant transmission disequilibrium in these families with the AVR intronic microsatellite (UNPHASED: LRS = 11.46, global P-value = 0.009, df = 3). Haplotype analysis of three microsatellites also showed significant association (LRS = 144.94, df = 103, global P = 0.004). Additionally, significant association is observed between these three microsatellite haplotypes and the VABS scores (P = 0.009), with the ADI-R (P = 0.009) and the ADOS-G (P = 0.0000765) diagnoses of autistic disorder versus pervasive developmental disorder-not otherwise specified (PDD-NOS) that were available for 47 of these probands. This is the third consecutive report of an association between the AVPR1a gene and autism spectrum disorders and in the current study a third microsatellite is shown to be associated with autism spectrum disorders as well as haplotypes consisting of all three markers. Importantly, the association appears to be mainly mediated by the role of the AVPR1a gene in shaping socialization skills, similar to its role in lower vertebrates.
Increasing evidence suggests that two nonapeptides, arginine vasopressin and oxytocin, shape human social behavior in both nonclinical and clinical subjects. Evidence is discussed that in autism spectrum disorders genetic polymorphisms in the vasopressin-oxytocin pathway, notably the arginine vasopressin receptor 1a (AVPR1a), the oxytocin receptor (OXTR), neurophysin I and II, and CD38 (recently shown to be critical for social behavior by mediating oxytocin secretion) contribute to deficits in socialization skills in this group of patients. We also present first evidence that CD38 expression in lymphoblastoid cells derived from subjects diagnosed with autism is correlated with social skill phenotype inventoried by the Vineland Adaptive Behavioral Scales. Additionally, we discuss molecular genetic evidence that in nonclinical subjects both AVPR1a and OXTR genes contribute to prosocial or altruistic behavior inventoried by two experimental paradigms, the dictator game and social values orientation. The role of the AVPR1a is also analyzed in prepulse inhibition. Prepulse inhibition of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. First results are presented showing that intranasal administration of arginine vasopressin increases salivary cortisol levels in the Trier Social Stress test. To summarize, accumulating studies employing a broad array of cutting-edge tools in psychology, neuroeconomics, molecular genetics, pharmacology, electrophysiology, and brain imaging are beginning to elaborate the intriguing role of oxytocin and arginine vasopressin in human social behavior. We expect that future studies will continue this advance and deepen our understanding of these complex events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.