ObjectiveDifferent indices and formulas of CBC parameters have been suggested as indicators of early stage screenings to detect couples with β-thalassemia minor (BTMi). In this study, we evaluated the accuracy of five previous published formulas and compared them to our new formula (│80-MCV│×│27-MCH│) in screening of β-thalassemia.MethodsAll couples in the premarital β-thalassemia screening program of Roodbar, Iran, for whom molecular analysis had been done, were selected during two years. The red blood cell parameters were applied to each formula, and a ROC curve was plotted for each one to check its discriminative effectiveness in β-thalassemia detection.ResultNone of the studied indices and formulas demonstrated 100% precision. However, we found that the Shine–Lal formula and our formula had the highest sensitivity in identifying BTMi individuals. The highest specificity belonged to our formula and Sirdah formula.ConclusionPrevious studies reported different sensitivities and specificities for the formulas. This can be attributed to different kinds of HBB gene mutations in various populations. Undoubtedly, physicians in different areas should evaluate the accuracy of published formulas for their own populations in the discrimination of BTMi from other causes of microcytic hypochromic anemia.
This study was undertaken to determine the dose-response relation between epileptiform activity burden and outcomes in acutely ill patients. Methods: A single center retrospective analysis was made of 1,967 neurologic, medical, and surgical patients who underwent >16 hours of continuous electroencephalography (EEG) between 2011 and 2017. We developed an artificial intelligence algorithm to annotate 11.02 terabytes of EEG and quantify epileptiform activity burden within 72 hours of recording. We evaluated burden (1) in the first 24 hours of recording, (2) in the 12-hours epoch with highest burden (peak burden), and (3) cumulatively through the first 72 hours of monitoring. Machine learning was applied to estimate the effect of epileptiform burden on outcome. Outcome measure was discharge modified Rankin Scale, dichotomized as good (0-4) versus poor (5-6). Results: Peak epileptiform burden was independently associated with poor outcomes (p < 0.0001). Other independent associations included age, Acute Physiology and Chronic Health Evaluation II score, seizure on presentation, and diagnosis of hypoxic-ischemic encephalopathy. Model calibration error was calculated across 3 strata based on the time interval between last EEG measurement (up to 72 hours of monitoring) and discharge: (1) <5 days between last measurement and discharge, 0.0941 (95% confidence interval [CI] = 0.0706-0.1191); 5 to 10 days between last measurement and discharge, 0.0946 (95% CI = 0.0631-0.1290); >10 days between last measurement and discharge, 0.0998 (95% CI = 0.0698-0.1335). After adjusting for covariates, increase in peak epileptiform activity burden from 0 to 100% increased the probability of poor outcome by 35%. Interpretation: Automated measurement of peak epileptiform activity burden affords a convenient, consistent, and quantifiable target for future multicenter randomized trials investigating whether suppressing epileptiform activity improves outcomes.
There is a significant positive relationship between the size and perceived strength of an individual's social network and internalized stigma and some recovery attitudes. Clinical programs that address any of these factors could potentially improve outcomes for this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.