We investigate a three-level system in the context of the fractional Schrödinger equation by considering fractional differential operators in time and space, which promote anomalous relaxations and spreading of the wave packet. We first consider the three-level system omitting the kinetic term, i.e., taking into account only the transition among the levels, to analyze the effect of the fractional time derivative. Afterward, we incorporate a kinetic term and the fractional derivative in space to analyze simultaneous wave packet transition and spreading among the levels. For these cases, we obtain analytical and numerical solutions. Our results show a wide variety of behaviors connected to the fractional operators, such as the non-conservation of probability and the anomalous spread of the wave packet.
Cognitive tasks in the human brain are performed by various cortical areas located in the cerebral cortex. The cerebral cortex is separated into different areas in the right and left hemispheres. We consider one human cerebral cortex according to a network composed of coupled subnetworks with small-world properties. We study the burst synchronization and desynchronization in a human neuronal network under external periodic and random pulsed currents. With and without external perturbations, the emergence of bursting synchronization is observed. Synchronization can contribute to the processing of information, however, there are evidences that it can be related to some neurological disorders. Our results show that synchronous behavior can be suppressed by means of external pulsed currents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.