Background We aimed to ascertain the cumulative risk of fatal or critical care unit-treated COVID-19 in people with diabetes and compare it with that of people without diabetes, and to investigate risk factors for and build a crossvalidated predictive model of fatal or critical care unit-treated COVID-19 among people with diabetes. MethodsIn this cohort study, we captured the data encompassing the first wave of the pandemic in Scotland, from March 1, 2020, when the first case was identified, to July 31, 2020, when infection rates had dropped sufficiently that shielding measures were officially terminated. The participants were the total population of Scotland, including all people with diabetes who were alive 3 weeks before the start of the pandemic in Scotland (estimated Feb 7, 2020). We ascertained how many people developed fatal or critical care unit-treated COVID-19 in this period from the Electronic Communication of Surveillance in Scotland database (on virology), the RAPID database of daily hospitalisations, the Scottish Morbidity Records-01 of hospital discharges, the National Records of Scotland death registrations data, and the Scottish Intensive Care Society and Audit Group database (on critical care). Among people with fatal or critical care unit-treated COVID-19, diabetes status was ascertained by linkage to the national diabetes register, Scottish Care Information Diabetes. We compared the cumulative incidence of fatal or critical care unit-treated COVID-19 in people with and without diabetes using logistic regression. For people with diabetes, we obtained data on potential risk factors for fatal or critical care unit-treated COVID-19 from the national diabetes register and other linked health administrative databases. We tested the association of these factors with fatal or critical care unit-treated COVID-19 in people with diabetes, and constructed a prediction model using stepwise regression and 20-fold cross-validation. Findings Of the total Scottish population onMarch 1, 2020 (n=5 463 300), the population with diabetes was 319 349 (5•8%), 1082 (0•3%) of whom developed fatal or critical care unit-treated COVID-19 by July 31, 2020, of whom 972 (89•8%) were aged 60 years or older. In the population without diabetes, 4081 (0•1%) of 5 143 951 people developed fatal or critical care unit-treated COVID-19. As of July 31, the overall odds ratio (OR) for diabetes, adjusted for age and sex, was 1•395 (95% CI 1•304-1•494; p<0•0001, compared with the risk in those without diabetes. The OR was 2•396 (1•815-3•163; p<0•0001) in type 1 diabetes and 1•369 (1•276-1•468; p<0•0001) in type 2 diabetes. Among people with diabetes, adjusted for age, sex, and diabetes duration and type, those who developed fatal or critical care unit-treated COVID-19 were more likely to be male, live in residential care or a more deprived area, have a COVID-19 risk condition, retinopathy, reduced renal function, or worse glycaemic control, have had a diabetic ketoacidosis or hypoglycaemia hospitalisation in the past 5 years, be on more...
Background Frailty, a state of increased vulnerability to adverse health outcomes, is important in diabetes management. We aimed to quantify the prevalence of frailty in people with diabetes, and to summarise the association between frailty and generic outcomes (eg, mortality) and diabetes-specific outcomes (eg, hypoglycaemia). Methods In this systematic review and study-level meta-analysis, we searched MEDLINE, Embase, and Web of Science for observational studies published between Jan 1, 2001 (the year of the original publication of the Fried frailty phenotype), to Nov 26, 2019. We included studies that assessed and quantified frailty in adults with diabetes, aged 18 years and older; and excluded conference abstracts, grey literature, and studies not published in English. Data from eligible studies were extracted using a piloted data extraction form. Our primary outcome was the prevalence of frailty in people with diabetes. Secondary outcomes were incidence of frailty and generic and diabetes-specific outcomes. Data were assessed by random-effects meta-analysis where possible and by narrative synthesis where populations were too heterogeneous to allow meta-analysis. This study is registered with PROSPERO, CRD42020163109. Findings Of the 3038 studies we identified, 118 studies using 20 different frailty measures were eligible for inclusion (n=1 375 373). The most commonly used measures of frailty were the frailty phenotype (69 [58%] of 118 studies), frailty (16 [14%]), and FRAIL scale (10 [8%]). Studies were heterogenous in setting (88 studies were community-based, 18 were outpatient-based, ten were inpatient-based, and two were based in residential care facilities), demographics, and inclusion criteria; therefore, we could not do a meta-analysis for the primary outcome and instead summarised prevalence data using a narrative synthesis. Median community frailty prevalence using frailty phenotype was 13% (IQR 9-21). Frailty was consistently associated with mortality in 13 (93%) of 14 studies assessing this outcome (pooled hazard ratio 1•51 [95% CI 1•30-1•76]), with hospital admission in seven (100%) of seven, and with disability in five (100%) of five studies. Frailty was associated with hypoglycaemia events in one study (<1%), microvascular and macrovascular complications in nine (82%) of 11 studies assessing complications, lower quality of life in three (100%) of three studies assessing quality of life, and cognitive impairment in three (100%) of three studies assessing cognitive impairment. 13 (11%) of 118 studies assessed glycated haemoglobin finding no consistent relationship with frailty. Interpretation The identification and assessment of frailty should become a routine aspect of diabetes care. The relationship between frailty and glycaemia, and the effect of frailty in specific groups (eg, middle-aged [aged <65 years] people and people in low-income and lower-middle-income countries) needs to be better understood to enable diabetes guidelines to be tailored to individuals with frailty. Funding Medical Rese...
Background Frailty is common in clinical practice, but trials rarely report on participant frailty. Consequently, clinicians and guideline-developers assume frailty is largely absent from trials and have questioned the relevance of trial findings to frail people. Therefore, we examined frailty in phase 3/4 industry-sponsored clinical trials of pharmacological interventions for three exemplar conditions: type 2 diabetes mellitus (T2DM), rheumatoid arthritis (RA), and chronic obstructive pulmonary disease (COPD). Methods We constructed a 40-item frailty index (FI) in 19 clinical trials (7 T2DM, 8 RA, 4 COPD, mean age 42–65 years) using individual-level participant data. Participants with a FI > 0.24 were considered ‘frail’. Baseline disease severity was assessed using HbA1c for T2DM, Disease Activity Score-28 (DAS28) for RA, and % predicted FEV1 for COPD. Using generalised gamma regression, we modelled FI on age, sex, and disease severity. In negative binomial regression, we modelled serious adverse event rates on FI and combined results for each index condition in a random-effects meta-analysis. Results All trials included frail participants: prevalence 7–21% in T2DM trials, 33–73% in RA trials, and 15–22% in COPD trials. The 99th centile of the FI ranged between 0.35 and 0.45. Female sex was associated with higher FI in all trials. Increased disease severity was associated with higher FI in RA and COPD, but not T2DM. Frailty was associated with age in T2DM and RA trials, but not in COPD. Across all trials, and after adjusting for age, sex, and disease severity, higher FI predicted increased risk of serious adverse events; the pooled incidence rate ratios (per 0.1-point increase in FI scale) were 1.46 (95% CI 1.21–1.75), 1.45 (1.13–1.87), and 1.99 (1.43–2.76) for T2DM, RA, and COPD, respectively. Conclusion The upper limit of frailty in trials is lower than has been described in the general population. However, mild to moderate frailty was common, suggesting trial data may be harnessed to inform disease management in people living with frailty. Participants with higher FI experienced more serious adverse events, suggesting screening for frailty in trial participants would enable identification of those that merit closer monitoring. Frailty is identifiable and prevalent among middle-aged and older participants in phase 3/4 drug trials and has clinically important safety implications.
Background Frailty and multimorbidity are common in type 2 diabetes (T2D), including people <65 years. Guidelines recommend adjustment of treatment targets in people with frailty or multimorbidity. It is unclear how recommendations to adjust treatment targets in people with frailty or multimorbidity should be applied to different ages. We assess implications of frailty/multimorbidity in middle/older-aged people with T2D. Methods We analysed UK Biobank participants (n = 20,566) with T2D aged 40–72 years comparing two frailty measures (Fried frailty phenotype and Rockwood frailty index) and two multimorbidity measures (Charlson Comorbidity index and count of long-term conditions (LTCs)). Outcomes were mortality, Major Adverse Cardiovascular Event (MACE), hospitalization with hypoglycaemia or fall/fracture. Results Here we show that choice of measure influences the population identified: 42% of participants are frail or multimorbid by at least one measure; 2.2% by all four measures. Each measure is associated with mortality, MACE, hypoglycaemia, and fall or fracture. The absolute 5-year mortality risk is higher in older versus younger participants with a given level of frailty (e.g. 1.9%, and 9.9% in men aged 45 and 65, respectively, using frailty phenotype) or multimorbidity (e.g. 1.3%, and 7.8% in men with 4 LTCs aged 45 and 65, respectively). Using frailty phenotype, the relationship between higher HbA1c and mortality is stronger in frail compared with pre-frail or robust participants. Conclusions Assessment of frailty/multimorbidity should be embedded within routine management of middle-aged and older people with T2D. Method of identification as well as features such as age impact baseline risk and should influence clinical decisions (e.g. glycaemic control).
ObjectivesTo estimate the association between individual participant characteristics and attrition from randomised controlled trials.DesignMeta-analysis of individual participant level data (IPD).Data sourcesClinical trial repositories (Clinical Study Data Request and Yale University Open Data Access).Eligibility criteria for selecting studiesEligible phase 3 or 4 trials identified according to prespecified criteria (PROSPERO CRD42018048202).Main outcome measuresAssociation between comorbidity count (identified using medical history or concomitant drug treatment data) and trial attrition (failure for any reason to complete the final trial visit), estimated in logistic regression models and adjusted for age and sex. Estimates were meta-analysed in bayesian linear models, with partial pooling across index conditions and drug classes.ResultsIn 92 trials across 20 index conditions and 17 drug classes, the mean comorbidity count ranged from 0.3 to 2.7. Neither age nor sex was clearly associated with attrition (odds ratio 1.04, 95% credible interval 0.98 to 1.11; and 0.99, 0.93 to 1.05, respectively). However, comorbidity count was associated with trial attrition (odds ratio per additional comorbidity 1.11, 95% credible interval 1.07 to 1.14). No evidence of non-linearity (assessed via a second order polynomial) was seen in the association between comorbidity count and trial attrition, with minimal variation across drug classes and index conditions. At a trial level, an increase in participant comorbidity count has a minor impact on attrition: for a notional trial with high level of attrition in individuals without comorbidity, doubling the mean comorbidity count from 1 to 2 translates to an increase in trial attrition from 29% to 31%.ConclusionsIncreased comorbidity count, irrespective of age and sex, is associated with a modest increased odds of participant attrition. The benefit of increased generalisability of including participants with multimorbidity seems likely to outweigh the disadvantages of increased attrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.