Compared to highly trained ultra-endurance athletes consuming an HC diet, long-term keto-adaptation results in extraordinarily high rates of fat oxidation, whereas muscle glycogen utilization and repletion patterns during and after a 3 hour run are similar.
Lee, EC, Fragala, MS, Kavouras, SA, Queen, RM, Pryor, JL, and Casa, DJ. Biomarkers in sports and exercise: tracking health, performance, and recovery in athletes. J Strength Cond Res 31(10): 2920–2937, 2017—Biomarker discovery and validation is a critical aim of the medical and scientific community. Research into exercise and diet-related biomarkers aims to improve health, performance, and recovery in military personnel, athletes, and lay persons. Exercise physiology research has identified individual biomarkers for assessing health, performance, and recovery during exercise training. However, there are few recommendations for biomarker panels for tracking changes in individuals participating in physical activity and exercise training programs. Our approach was to review the current literature and recommend a collection of validated biomarkers in key categories of health, performance, and recovery that could be used for this purpose. We determined that a comprehensive performance set of biomarkers should include key markers of (a) nutrition and metabolic health, (b) hydration status, (c) muscle status, (d) endurance performance, (e) injury status and risk, and (f) inflammation. Our review will help coaches, clinical sport professionals, researchers, and athletes better understand how to comprehensively monitor physiologic changes, as they design training cycles that elicit maximal improvements in performance while minimizing overtraining and injury risk.
The present study assessed the effects of mild dehydration on cognitive performance and mood of young males. A total of twenty-six men (age 20·0 (SD 0·3) years) participated in three randomised, single-blind, repeated-measures trials: exercise-induced dehydration plus a diuretic (DD; 40 mg furosemide); exercise-induced dehydration plus placebo containing no diuretic (DN); exercise while maintaining euhydration plus placebo (EU; control condition). Each trial included three 40 min treadmill walks at 5·6 km/h, 5 % grade in a 27·78C environment. A comprehensive computerised six-task cognitive test battery, the profile of mood states questionnaire and the symptom questionnaire (headache, concentration and task difficulty) were administered during each trial. Paired t tests compared the DD and DN trials resulting in .1 % body mass loss (mean 1·59 (SD 0·42) %) with the volunteer's EU trial (0·01 (SD 0·03) %). Dehydration degraded specific aspects of cognitive performance: errors increased on visual vigilance (P¼0·048) and visual working memory response latency slowed (P¼ 0·021). Fatigue and tension/anxiety increased due to dehydration at rest (P¼ 0·040 and 0·029) and fatigue during exercise (P¼0·026). Plasma osmolality increased due to dehydration (P,0·001) but resting gastrointestinal temperature was not altered (P¼0·238). In conclusion, mild dehydration without hyperthermia in men induced adverse changes in vigilance and working memory, and increased tension/anxiety and fatigue.Key words: Vigilance: Reaction time: Reasoning: Memory: FurosemideThe most comprehensive studies that evaluated the effects of dehydration on cognitive performance were conducted more than 20 years ago in laboratories located in a hot climate (1,2) . These studies employed a combination of highheat and aerobic exercise to rapidly produce dehydration. Subsequently, at least six other studies have evaluated the influence of body water loss via exercise in the heat (3 -5) and suggested that mild dehydration adversely affects cognitive function at approximately 2 % or more body mass loss, but not at 1 % body mass loss (1,2,5) . However, because body water loss and hyperthermia (i.e. resulting from exercise in a hot environment) were both present in these studies, the effects of dehydration alone could not be examined. Recently, three studies have examined dehydration without inducing hyperthermia (3,6,7) , via passive water restriction or prolonged exercise in a mild environment. These studies induced a narrow range of moderate dehydration (2·6-2·8 %) and therefore did not determine whether more modest levels of dehydration affect cognitive function.The present investigation was designed to assess the effects of mild dehydration, between 1 and 2 % body water loss, on cognitive performance and mood of healthy young males. Few studies have evaluated the effects of such mild dehydration in either men or women (7,8) . To isolate mild dehydration as the sole independent variable, body water loss was induced by mild exercise in a mild environ...
Limited information is available regarding the effects of mild dehydration on cognitive function. Therefore, mild dehydration was produced by intermittent moderate exercise without hyperthermia and its effects on cognitive function of women were investigated. Twenty-five females (age 23.0 ± 0.6 y) participated in three 8-h, placebo-controlled experiments involving a different hydration state each day: exercise-induced dehydration with no diuretic (DN), exercise-induced dehydration plus diuretic (DD; furosemide, 40 mg), and euhydration (EU). Cognitive performance, mood, and symptoms of dehydration were assessed during each experiment, 3 times at rest and during each of 3 exercise sessions. The DN and DD trials in which a volunteer attained a ≥1% level of dehydration were pooled and compared to that volunteer's equivalent EU trials. Mean dehydration achieved during these DN and DD trials was -1.36 ± 0.16% of body mass. Significant adverse effects of dehydration were present at rest and during exercise for vigor-activity, fatigue-inertia, and total mood disturbance scores of the Profile of Mood States and for task difficulty, concentration, and headache as assessed by questionnaire. Most aspects of cognitive performance were not affected by dehydration. Serum osmolality, a marker of hydration, was greater in the mean of the dehydrated trials in which a ≥1% level of dehydration was achieved (P = 0.006) compared to EU. In conclusion, degraded mood, increased perception of task difficulty, lower concentration, and headache symptoms resulted from 1.36% dehydration in females. Increased emphasis on optimal hydration is warranted, especially during and after moderate exercise.
Personalized hydration strategies play a key role in optimizing the performance and safety of athletes during sporting activities. Clinicians should be aware of the many physiological, behavioral, logistical and psychological issues that determine both the athlete’s fluid needs during sport and his/her opportunity to address them; these are often specific to the environment, the event and the individual athlete. In this paper we address the major considerations for assessing hydration status in athletes and practical solutions to overcome obstacles of a given sport. Based on these solutions, practitioners can better advise athletes to develop practices that optimize hydration for their sports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.