The main design principles in computer architecture have recently shifted from a monolithic scaling-driven approach to the development of heterogeneous architectures that tightly co-integrate multiple specialized processor and memory chiplets. In such data-hungry multi-chip architectures, current Networksin-Package (NiPs) may not be enough to cater to their heterogeneous and fast-changing communication demands. This position paper makes the case for wireless in-package nanonetworking as the enabler of efficient and versatile wired-wireless interconnect fabrics for massive heterogeneous processors. To that end, the use of graphene-based antennas and transceivers with unique frequency-beam reconfigurability in the terahertz band is proposed. The feasibility of such a nanonetworking vision and the main research challenges towards its realization are analyzed from the technological, communications, and computer architecture perspectives.
The main design principles in computer architecture have recently shifted from a monolithic scaling-driven approach to the development of heterogeneous architectures that tightly co-integrate multiple specialized processor and memory chiplets. In such data-hungry multi-chip architectures, current Networksin-Package (NiPs) may not be enough to cater to their heterogeneous and fast-changing communication demands. This position paper makes the case for wireless in-package networking as the enabler of efficient and versatile wired-wireless interconnect fabrics for massive heterogeneous processors. To that end, the use of graphene-based antennas and transceivers with unique frequency-beam reconfigurability in the terahertz band is proposed. The feasibility of such a wireless vision and the main research challenges towards its realization are analyzed from the technological, communications, and computer architecture perspectives.
Graphene is an attractive material for communications in the THz range due to its ability to support surface plasmon polaritons. This enables a graphene antenna to be smaller in size than its metallic counterpart. In addition, the possibility to control the graphene conductivity during operation by an applied bias leads to the tunability of the resonant frequency of graphene antennas. Graphene-based antennas integrated into transceivers working at THz frequencies may lead to faster and more efficient devices. In this work, we design and simulate a graphene patch antenna that can be integrated into transceivers by through-substrate vias. The tuning of the resonant frequency is also studied by simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.