Despite ample research, the structure and the functional characteristics of neural systems involved in human face processing are still a matter of active debate. Here we dissociated between a neural mechanism manifested by the face-sensitive N170 event-related potential effect and a mechanism manifested by induced electroencephalographic oscillations in the gamma band, which have been previously associated with the integration of individually coded features and activation of corresponding neural representations. The amplitude of the N170 was larger in the absence of the face contour but not affected by the configuration of inner components (ICs). Its latency was delayed by scrambling the configuration of the components as well as by the absence of the face contour. Unlike the N170, the amplitude of the induced gamma activity was sensitive to the configuration of ICs but insensitive to their presence within or outside a face contour. This pattern suggests a dual mechanism for early face processing, each utilizing different visual cues, which might indicate their respective roles in face processing. The N170 seems to be associated primarily with the detection and categorization of faces, whereas the gamma oscillations may be involved in the activation of their mental representation.
While brain imaging studies emphasized the category selectivity of face-related areas, the underlying mechanisms of our remarkable ability to discriminate between different faces are less understood. Here, we recorded intracranial local field potentials from face-related areas in patients presented with images of faces and objects. A highly significant exemplar tuning within the category of faces was observed in high-Gamma (80-150 Hz) responses. The robustness of this effect was supported by single-trial decoding of face exemplars using a minimal (n = 5) training set. Importantly, exemplar tuning reflected the psychophysical distance between faces but not their low-level features. Our results reveal a neuronal substrate for the establishment of perceptual distance among faces in the human brain. They further imply that face neurons are anatomically grouped according to well-defined functional principles, such as perceptual similarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.