This paper investigates singularly perturbed parabolic partial differential equations with delay in space, and the right end plane is an integral boundary condition on a rectangular domain. A small parameter is multiplied in the higher order derivative, which gives boundary layers, and due to the delay term, one more layer occurs on the rectangle domain. A numerical method comprising the standard finite difference scheme on a rectangular piecewise uniform mesh (Shishkin mesh) of $N_{r} \times N_{t}$
N
r
×
N
t
elements condensing in the boundary layers is suggested, and it is proved to be parameter-uniform. Also, the order of convergence is proved to be almost two in space variable and almost one in time variable. Numerical examples are proposed to validate the theory.
A class of third order singularly perturbed delay differential equations of reaction diffusion type with an integral boundary condition is considered. A numerical method based on a finite difference scheme on a Shishkin mesh is presented. The method suggested is of almost first order convergent. An error estimate is derived in the discrete norm. Numerical examples are presented, which validate the theoretical estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.