Silicon nanocrystals (Si NCs) are attractive functional materials. They are compatible with standard electronics and communications platforms as well being biocompatible. Numerous methods have been developed to realize size-controlled Si NC synthesis. While these procedures produce Si NCs that appear identical, their optical responses can differ dramatically. Si NCs prepared using high-temperature methods routinely exhibit photoluminescence agreeing with the effective mass approximation (EMA), while those prepared via solution methods exhibit blue emission that is somewhat independent of particle size. Despite many proposals, a definitive explanation for this difference has been elusive for no less than a decade. This apparent dichotomy brings into question our understanding of Si NC properties and potentially limits the scope of their application. The present contribution takes a substantial step forward toward identifying the origin of the blue emission that is not expected based upon EMA predictions. It describes a detailed comparison of Si NCs obtained from three of the most widely cited procedures as well as the conversion of red-emitting Si NCs to blue-emitters upon exposure to nitrogen containing reagents. Analysis of the evidence is consistent with the hypothesis that the presence of trace nitrogen and oxygen even at the ppm level in Si NCs gives rise to the blue emission.
Simultaneous control of phase, size, and morphology in nanoscale nickel phosphides is reported. Phase-pure samples of discrete nanoparticles of Ni12P5 and Ni2P in hollow and solid morphologies can be prepared in a range of sizes (10-32 nm) by tuning key interdependent synthetic levers (P:Ni precursor ratio, temperature, time, oleylamine quantity). Size and morphology are controlled by the P:Ni ratio in the synthesis of the precursor particles, with large, hollow particles formed at low P:Ni and small, solid particles formed at high P:Ni. The P:Ni ratio also impacts the phase at the crystallization temperature (300-350 °C), with metal-rich Ni12P5 generated at low P:Ni and Ni2P at high P:Ni. Moreover, the product phase formed can be decoupled from the initial precursor ratio by the addition of more "P" at the crystallization temperature. This enables formation of hollow particles (favored by low P:Ni) of Ni2P (favored by high P:Ni). Increasing temperature and time also favor formation of Ni2P, by generating more reactive P and providing sufficient time for conversion to the thermodynamic product. Finally, increasing oleylamine concentration allows Ni12P5 to be obtained under high P:Ni precursor ratios that favor solid particle formation. Oleylamine concentration also acts to "tune" the size of the voids in particles formed at low P:Ni ratios, enabling access to Ni12P5 particles with different void sizes. This approach enables an unprecedented level of control over phase and morphology of nickel phosphide nanoparticles, paving the way for systematic investigation of the impact of these parameters on hydrodesulfurization activities of nickel phosphides.
A facile size-controlled synthesis (microwave/ conventional) of quasi-spherical germanium nanoparticles is reported. Oleylamine serves as a solvent, a binding ligand, and a reducing agent in the synthesis. Reactions were carried out with microwave-assisted heating, and the results have been compared with those produced by conventional heating. Germanium iodides (GeI 4 , GeI 2 ) were used as the Ge precursor, and size control in the range of 4−11 nm was achieved by controlling the ratio of Ge 4+ /Ge 2+ in the precursor mix. Longer reaction times and higher temperatures were also observed to have an effect on the nanoparticle size distribution. Microwave heating resulted in crystalline nanoparticles at lower temperatures than conventional resistive heating because of the ability of germanium iodides to convert electromagnetic radiation directly to heat. The reported approach for germanium nanoparticle preparation avoids the use of strong reducing agents (LiAlH 4 , n-BuLi, NaBH 4 ) and HF for etching and, thus, can be considered simple, safe, and amenable to industrial-level scaleup. The as-prepared nanoparticles are a stable dispersion (hexane or toluene) for weeks when stored under an inert atmosphere (N 2 /Ar). The stability of the colloidal dispersion was observed to be dependent on the nanoparticle size, with smaller nanoparticles exhibiting longer stability. On exposure to ambient conditions, oxidation occurs over a period of time and results in slow precipitation of the nanoparticles. The nanoparticles have been characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and spectroscopic techniques (UV-Vis-NIR, FTIR, Raman).
Applications of Ge nanocrystals (NCs) are limited by the stability and air reactivity of the Ge surface. In order to promote stability and increase the diversity of ligand functionalization of Ge NCs, the preparation of thiol-passivated Ge NCs via a ligand exchange process was investigated. Herein a successful replacement of oleylamine ligands on the surface of Ge NCs with dodecanethiol is reported. The successful ligand exchange was monitored by FTIR and NMR spectroscopy and it was found that dodecanethiol provided a better surface coverage, leading to stable Ge NC dispersions. Dodecanethiol capping also enabled band gap determination of the NCs by surface photovoltage (SPV) spectroscopy. The SPV measurements indicated an efficient charge separation in the ligand-exchanged Ge NCs. On the other hand, oleylamine-terminated Ge NCs of similar sizes exhibited a very small photovoltage, indicating a poorly passivated surface.
The transformation of Fe nanoparticles by trioctylphosphine (TOP) to phase-pure samples of either Fe(2)P or FeP is reported. Fe nanoparticles were synthesized by the decomposition of Fe(CO)(5) in a mixture of octadecene and oleylamine at 200 degrees C and were subsequently reacted with TOP at temperatures in the region of 350-385 degrees C to yield iron phosphide nanoparticles. Shorter reaction times favored an iron-rich product (Fe(2)P), and longer reaction times favored a phosphorus-rich product (FeP). The reaction temperature was also a crucial factor in determining the phase of the final product, with higher temperatures favoring FeP and lower temperatures Fe(2)P. We also observe the formation of hollow structures in both FeP spherical nanoparticles and Fe(2)P nanorods, which can be attributed to the nanoscale Kirkendall effect. Magnetic measurements conducted on phase-pure samples suggest that approximately 8 x 70 nm Fe(2)P rods are ferromagnetic with a Curie temperature between 215 and 220 K and exhibit a blocking temperature of 179 K, whereas FeP is metamagnetic with a Neel temperature of approximately 120 K. These data agree with the inherent properties of bulk-phase samples and attest to the phase purity that can be achieved by this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.