Applications of Ge nanocrystals (NCs) are limited by the stability and air reactivity of the Ge surface. In order to promote stability and increase the diversity of ligand functionalization of Ge NCs, the preparation of thiol-passivated Ge NCs via a ligand exchange process was investigated. Herein a successful replacement of oleylamine ligands on the surface of Ge NCs with dodecanethiol is reported. The successful ligand exchange was monitored by FTIR and NMR spectroscopy and it was found that dodecanethiol provided a better surface coverage, leading to stable Ge NC dispersions. Dodecanethiol capping also enabled band gap determination of the NCs by surface photovoltage (SPV) spectroscopy. The SPV measurements indicated an efficient charge separation in the ligand-exchanged Ge NCs. On the other hand, oleylamine-terminated Ge NCs of similar sizes exhibited a very small photovoltage, indicating a poorly passivated surface.
Nanogermanium is a material that has great potential for technological applications, and doped and alloyed Ge nanocrystals (NCs) are actively being considered. New alloys and compositions are possible in colloidal synthesis because the reactions are kinetically rather than thermodynamically controlled. Most of the Group V elements have been shown to be n-type dopants in Ge to increase carrier concentration; however, thermodynamically, Bi shows no solubility in crystalline Ge. Bi-doped Ge NCs were synthesized for the first time in a microwave-assisted solution route. The oleylamine capping ligand can be replaced by dodecanethiol without loss of Bi. A positive correlation between the lattice parameter and the concentration of Bi content (0.5–2.0 mol %) is shown via powder X-ray diffraction and selected area electron diffraction. X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), scanning TEM, and inductively coupled plasma–mass spectroscopy are consistent with the Bi solubility up to 2 mol %. The NC size increases with increasing amount of bismuth iodide employed in the reaction. Absorption data show that the band gap of the Bi-doped Ge NCs is consistent with the NC size. This work shows that a new element can be doped into Ge NCs via a microwave-assisted route in amounts as high as 1–2 mol %, which leads to increased carriers. Colloidal chemistry provides an inroad to new materials not accessible via other means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.