Ecuador has a high diversity of ecosystems in its coastal and marine territory with beaches, bays, estuaries, cliffs, coastal lagoons and rocky coasts being the most representative. So far, 1,859 marine species have been identified in Ecuador. Of these, 1380 species of non-commercial marine invertebrates and vertebrates, belonging to 8 Phyla and distributed in 25 groups or classes, occur along the coast of Ecuador. These are: Protozoans, 9 groups: Oceanic and estuarine Diatoms, Cyanophyta, Chlorophyta, Dinoflagellates, Coccolithophorida, Silicoflagellates, Euglenophyta, Tintinnids and planktonic and benthic Foraminifera; Cnidaria, 2 classes: Hydromedusae and Scyphomedusae; Mollusca, 5 classes: Wood-boring molluscs and rock-boring and benthic bivalves; Gasteropoda: (Thecosomatans, Pteropods, Heteropods and benthic species, Polyplacophora, Scaphopoda and Cephalopoda); Annelida, 1 group: benthic Polychaeta; Arthropoda, 1 class: Crustacea (Cirripedia, Anomura, Brachyuran, Euphausiids); Chaetognatha, 1 group; Echinodermata, 4 classes: Asteroidea, Ophiuroidea, Echinoidea and Holothuroidea; Chordata, 2 classes: Marine mammals and birds. Both the biodiversity of the meiobenthos of the Gulf of Guayaquil and that of the inter-tidal zone are presented. The 479 demersal species of commercial importance are grouped in 4 Phyla (Chordata, Arthropoda, Mollusca, and Echinodermata), 41 orders, 143 families and 258 genera. The phylum Chordata represented by fish is the most diverse group on the coast with 270 species from 142 genera, 63 families, and 22 orders, the order Perciformes being the best represented with 143 species. Molluscs form the next biggest group with 110 species. In general, the biggest biodiversity of species seems to be in the Gulf of Guayaquil, the main estuary of Ecuador. However, this may be because that area has been better studied than the others. The work presented is mainly the result of research carried out by Equatorians and thus cannot be claimed to include the whole of the current information about marine biodiversity in Ecuador.KEYWORDS: Biodiversity, pelagic, demersal, benthic, Gulf of Guayaquil. RESUMENEcuador tiene una diversidad alta de ecosistemas en todo su territorio marino-costero donde las playas, bahías, estuarios, acantilados, lagunas costeras y las costas rocosas son los de mayor representatividad. Hay un total de 1.859 especies marinas que han sido identificadas para Ecuador, que incluye especies comerciales y no comerciales. Se conoce que 1.380 especies de invertebrados y vertebrados marinos no comerciales pertenecen a 8 Phyla, los cuales han sido reportados para el Pacífico ecuatoriano, distribuidos en 25 grupos o clases de organismos que son: Protozoos: 9 grupos: Diatomeas oceánicas y estuarinas, Cyanophyta, Chlorophytas, Dinoflagelados, Coccolitophorida, Silicoflagelados, Euglenophyta, Tintinnidos, Foraminíferos planctónicos y bentónicos, Cnidaria, 2 clases: Hydromedusas y Scyphomedusas; Mollusca, 5 clases: Bivalvos (Bentónicos, perforadores de maderas y rocas), Gasteropods ...
Aim We evaluated whether patterns of species diversity (α, β and γ) of rocky shore assemblages followed latitudinal gradients (i.e. LDGs) along the South American coasts, and tested hypotheses related to potential processes sustaining or disrupting the expected LDG pattern at various spatial scales. Location Coasts of South America. Taxon Macroalgae and sessile/slow‐moving macrofauna on intertidal rocky shores. Methods We evaluated changes in species composition across 143 sites. The degree of replacement and loss of species at different spatial scales (i.e. coasts, regions and sites) were estimated to help distinguish among ecological, historical and evolutionary hypotheses for explaining LDGs. Furthermore, components of diversity and taxonomic distinctness were measured, and variability in these measures was decomposed using analysis of covariance. Finally, we examined relationships between diversity and a suite of environmental and anthropogenic variables to identify potential mechanisms that may be responsible for the reported spatial relationships. Results Species composition varied with latitude, and this variability was relatively consistent on both coasts. At all spatial scales, replacement of species was the dominant phenomenon (>95%), rather than loss in the total number of species (<5%). LDGs were strongly dependent on the diversity component and the spatial scale: generally, positive for regional β‐diversity, negative for α‐diversity and site β‐diversity. Sea surface temperature (SST) was the variable that best explained patterns of diversity along both coasts (14%–22%), but other regional and local environmental variables associated with river discharges, upwelling, confluence of currents, tides and anthropogenic pressures also accounted for an important portion of variation (5%–14% each). Main conclusions Species diversity of South American rocky shores followed, with interruptions, LDGs. The trend of those LDGs, however, depended on the scale and metric used to describe diversity. It is proposed that patterns of LDGs at various scales are not the result of a single overarching process but are strongly influenced by local and regional processes. Although the most evident environmental gradient was the decrease in SST towards the south, it was demonstrated that regional and local environmental variables were also important for understanding the increase in regional β‐diversity towards the tropics.
Anadara tuberculosa is one of the most important bivalves along the Western Pacific coast because of its commercial value. Nevertheless, the variability in growth, long-life span, natural mortality and reproductive parameters of this mangrove cockle has not yet been described. The aim of this study was to analyze these lifehistory traits in three areas of the Southern coast of Ecuador. Empirical and length-based methods were used to estimate these biological parameters. Body size data were collected from the commercial fishery between 2004 and 2011 in landing ports near to the Archipelago of Jambeli [Puerto Bolivar (PB), Puerto Jeli (PJ) and Puerto Hualtaco (PH)]. The von Bertalanffy growth parameters for combined sex were estimated between 70.87 to 93.45mm for L ∞ and 0.22 to 0.80/year for k. The growth indices (Φ') ranged from 3.17 to 3.85, while the overall growth performance (OGP) ranged from 5.03 to 5.82. The mean of long-life span (t max ), size and age at maturity (L 50% and t 50% ) were estimated in 7.71±2.53years, 39.13±2.24mm and 1.46±0.56years for PB; 9.51±2.85years, 37.78±1.95mm and 1.37±0.41years for PJ and 5.81±2.11years, 39.73±3.31mm and 0.94±0.41years for PH. Natural mortality (M) ranged from 0.46 to 1.28/year. We concluded that significant intra-specific variation was observed in a temporal scale in Φ' and OGP indices as well as L 50% and M. Therefore, temporal changes in these life-history traits should be taken into account when assessing the status of the mangrove cockle fishery. Rev. Biol. Trop. 62 (2): 473-482. Epub 2014 June 01.
El Archipiélago de Jambelí representa una de las zonas de captura de concha de mayor relevancia por sus volúmenes de desembarque. Con base en datos de captura y esfuerzo de Puerto Bolívar, Puerto Jelí y Hualtaco del período 2004-2011, se analizaron los cambios espacio-temporales de la captura por unidad de esfuerzo (CPUE). Se evaluó el efecto de la época del año y marea en el período 2009-2011. La CPUE presentó diferencias interanuales y mostró una reducción del 41% en el período 2005-2009 y a partir del 2010, se notó un incremento entre 4-10%. Se encontraron diferencias significativas en la CPUE entre años, épocas del año y períodos de marea, en cada uno de los puertos. Se sugiere que, el seguimiento a la pesquería de concha considere los factores analizados en este estudio para la toma de información y la recolección de datos de captura y esfuerzo por zonas de pesca.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.