The study of the sunflower seed separation process during its movement on the vibrating surface has been carried out in two stages. The first (theoretical) stage has been implemented in the software package STAR-CCM + using the corresponding physical models. The second stage is the conduct of experimental research on a pilot sample with a base of vibrating pneumatic PVS table. As a result of numerical simulation and experimental studies of the sunflower seed separation process during its movement on the vibrating surface, we have determined the dependences of the change in the distribution coefficient, productivity and power consumed by the vibrating pneumatic separator from the seed supply, the inclination angles of the vibrating surface, the frequency and amplitude of its oscillation and the velocity of the airflow V. The statistical analysis has shown that the correlation coefficient between the theoretical and experimental dependencies in the variation of the values of the factors in the given range is 0.88-0.92. The technological and constructive scheme of the adaptive vibrating pneumatic separator with rationally defined regime parameters (seed supply, airflow velocity, deck oscillation frequency, deck inclination angle) has been developed basing of the obtained theoretical and experimental dependencies, using the software which is based on the created algorithm, allowing to perform the technological process of sunflower seed mixtures separating by volume density with higher productivity and quality.
Preparing cows for milking is one of the most important operations. Not only the speed of milk production but also the quality of milk depends on the level of the work performed. One of the most effective ways to mechanize the preparation of cows for milking implies the development of a special mechanical brush that cleans and stimulates the teat skin. As a result, there is no need to use additional foam detergents and napkins to cleanse and disinfect teats. A device has been designed for cleansing teats with two rotating brushes. Theoretical studies of the interaction of cleansing elements of the device for mechanical removal of pollutants from the udder teats in the course of milking operation were carried out. Assuming constancy of the modulus of elasticity, shape and roughness of teats, linear and angular velocities of brushes, nap stiffness, and homogeneity of physical and mechanical properties of contaminants on the teat, dependence of force Fe of the mechanical device on length l of the cleansing element and its speed ω was established. Under the condition that force Fe of the mechanical device is smaller than force Fp which causes pain but greater than the force retaining pollutants (adhesion), values of the main design and technological parameters of the developed device were determined: l=8 mm, ω=106 rpm. As a result of production tests, it was found that when using the developed device, the daily milk yield of the experimental group of cows exceeded that of the control group by an average of 1.1 times which has made it possible to obtain a supplement of 132.5 kg of milk. Along with this, there was a 0.19 % increase in milk fat content in the experimental group compared to the control group. The number of microorganisms decreased 2.2 times and the number of contaminant particles decreased 4.6 times
Many years of experience in the operation of milking machines show that milking rubber was and remains a short-lived and unreliable link in the technological process of machine milking. During operation, rubber quickly loses its strength and elastic properties, becomes stiff and less elastic, deforms, and changes its shape. The purpose of this study is to identify changes in the technical parameters of milking rubber under industrial conditions in order to establish their impact on the milking process. The obtained results could make it possible to rationally choose the milking rubber for teat cups, which would ensure an effective milking process. During this study’s initial stage, the physical and mechanical condition of milking rubber was experimentally established at steam disinfection and as a result of saturating the article with milk fats. The following stage implied detecting the effect of milking rubber tension in a teat cup on the speed of milking. It was established that milking rubber during operation is actively exposed to milk fat, which leads to the loss of its weight relative to its original value. On day 1,000 of work, the weight loss relative to the initial value (100 g), under the washing regime temperature of 85 °C, 50 °C, 35 °C, and 20 °C, was 1 g, 3.3 g, 5 g, and 4.2 g, respectively. The dependences have been derived for the swell mass of milking rubber M on the temperature of washing solutions T and the duration of operation t as a result of saturation with milk fats. The dependence of milk yield rate V on the tension force of milking rubber F in teat cups has been established. Thus, it was found that when the tension force of milking rubber changes from 25 to 60 N, the difference in the average intensity of milk yield is 0.13 kg/min (10.8 %). Regarding the amount of milk yield at the specified tension, the difference is 0.15 kg (2.5 %). At rubber tension from 60 to 25 N, the average milking time increases by 0.46 min (8.3 %). Thus, it was determined that a milking machine with milking rubber at different tension over a total milking time would unevenly milk different parts of the cow’s udder. The study reported here expands the idea about the technical and manufacturing characteristics of rubber articles, namely changes in them at steam disinfection and as a result of saturation with milk fats
One of the tasks that imply increasing the milk productivity of cows is to create optimal maintenance conditions that ensure the increased use of the genetic potential of cattle based on the implementation of engineering and technological solutions. A mathematical model has been built that links the technical and technological parameters of the vacuum system of milking equipment, namely, the value of the working vacuum P, the pulsation frequency n, the ratio of pulsation cycles, and the tension strength of milking rubber FH to cows’ milk yield rate V. The range of milking plant operating parameters for milking in the milk line has been determined, at which the milk yield rate is maximum: P=52 kPa, n=57.6–58.8 min–1, δ=0.59–0.64, FH=59.3–60.4 H. Under these parameters, the milk yield rate is V=1.48–1.53 l/min. The results of the multifactor experiment have helped construct an adequate mathematical model of the second order, which confirms the theoretical dependence of the influence of the technical and technological parameters of the vacuum system of milking equipment on milk yield rate and the air flow of the milking machine. Analysis of the mathematical model has made it possible to establish the rational structural and technological parameters for the vacuum system of a milking machine: the value of the working vacuum, P=50.6 kPa; pulsation frequency, n=55.9 min–1, the ratio of pulsation cycles and the tension force of milking rubber FH=64.8 H. Under these parameters, the milk yield rate is maximum: V=1.47–1.52 l/min; the air flow consumption of the milking machine is Q=2.19 m3/h. The mathematical model built fully reveals the influence of technical and technological parameters of milking equipment on the efficiency of machine milking. Owing to this, the issue related to the rational choice of equipment is resolved.
Technical and technological provision of complex waste processing of plant raw oil cultures in food for organic animals. Scientific Horizons, 07 (92), 112-119.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.