Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect – oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level.
Two dimensional electron gases (2DEGs) realized at GaAs/AlGaAs single interfaces by molecular-beam epitaxy (MBE) reach mobilities of about 15 million cm2 V s−1 if the AlGaAs alloy is grown after the GaAs. Surprisingly, the mobilities may drop to a few millions for the identical but inverted AlGaAs/GaAs interface, i.e. reversed layering. Here we report on a series of inverted heterostructures with varying growth parameters including temperature, doping, and composition. Minimizing the segregation of both dopants and background impurities leads to mobilities of 13 million cm2 V s−1 for inverted structures. The dependence of the mobility on electron density tuned by a gate or by illumination is found to be the identical if no doping layers exist between the 2DEG and the respective gate. Otherwise, it differs significantly compared to normal interface structures. Reducing the distance of the 2DEG to the surface down to 50 nm requires an additional doping layer between 2DEG and surface in order to compensate for the surface-Schottky barrier. The suitability of such shallow inverted structures for future semiconductor-superconductor hybrid systems is discussed. Lastly, our understanding of the improved inverted interface enables us to produce optimized double-sided doped quantum wells exhibiting an electron mobility of 40 million cm2 V s−1 at 1 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.