Investigations on the origins of friction are still scarce and controversial. In particular, the contributions of electronic and phononic excitations are poorly known. A direct way to distinguish between them is to work across the superconducting phase transition. Here, non-contact friction on a Nb film is studied across the critical temperature TC using a highly sensitive cantilever oscillating in the pendulum geometry in ultrahigh vacuum. The friction coefficient Γ is reduced by a factor of three when the sample enters the superconducting state. The temperature decay of Γ is found to be in good agreement with the Bardeen-Cooper-Schrieffer theory, meaning that friction has an electronic nature in the metallic state, whereas phononic friction dominates in the superconducting state. This is supported by the dependence of friction on the probe-sample distance d and on the bias voltage V. Γ is found to be proportional to d-1 and V2 in the metallic state, whereas Γ∼d-4 and Γ∼V4 in the superconducting state. Therefore, phononic friction becomes the main dissipation channel below the critical temperature.
We have realized an integer quantum Hall system with superconducting contacts by connecting graphene to niobium electrodes. Below their upper critical field of 4 T, an integer quantum Hall effect coexists with superconductivity in the leads but with a plateau conductance that is larger than in the normal state. We ascribe this enhanced quantum Hall plateau conductance to Andreev processes at the graphene-superconductor interface leading to the formation of so-called Andreev edge-states. The enhancement depends strongly on the filling-factor and is less pronounced on the first plateau due to the special nature of the zero energy Landau level in monolayer graphene.
Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. The formation of metallic nanostructures by exposure of molybdenum and tungsten surfaces to high fluxes of low energy helium ions is studied as a function of the ion energy, plasma exposure time, and surface temperature. Helium plasma exposure leads to the formation of nanoscopic filaments on the surface of both metals. The size of the helium-induced nanostructure increases with increasing surface temperature while the thickness of the modified layer increases with time.In addition, the growth rate of the nanostructured layer also depends on the surface temperature. The size of the nanostructure appears linked with the size of the near-surface voids induced by the low energy ions. The results presented here thus demonstrate that surface processing by low-energy helium ions provides an efficient route for the formation of porous metallic nanostructures.
We present an ultrafast neural network (NN) model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 300 million flux calculations of the quasilinear gyrokinetic transport model QuaLiKiz. The database covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modelling framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and validated through application to three JET shots covering a representative spread of H-mode operating space, predicting turbulent transport of energy and particles in the plasma core. JINTRAC-QLKNN and RAPTOR-QLKNN are able to accurately reproduce JINTRAC-QuaLiKiz T i,e and n e profiles, but 3 to 5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order 1%-15%. Also the dynamic behaviour was well captured by QLKNN, with differences of only 4%-10% compared to JINTRAC-QuaLiKiz observed at mid-radius, for a study of density buildup following the L-H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak modelling is a promising route towards enabling accurate and fast tokamak scenario optimization, Uncertainty Quantification, and control applications.
Edge Localized Modes (ELMs) are a major concern for the lifetime of the divertor plasma-facing materials (PFMs) in ITER. The very high localized heat fluxes will lead to material erosion, melting and vaporization. In addition, the repetition of such thermal shocks can lead to a degradation of the material thermomechanical properties. In ITER, the PFMs will be submitted to both the steady state detached divertor plasma and the intense heat and particle fluxes during ELMs. In such a situation, the ELMs will interact with a surface modified by the intense fluxes of low energy ions, which are known to lead to strong modifications of the surface morphology. Moreover, the surface will be in equilibrium with the steady-state plasma and the nearsurface will be loaded with helium and hydrogen isotopes. Such a situation might lead to strong synergistic effects which need to be investigated in details. A new experimental setup is being developed at FOM Rijnhuizen for ELM simulation experiments with relevant steady-state plasma conditions and transient heat/particle source, allowing those effects to be studied in a selfconsistent manner. The initial setup is based on the Pilot-PSI linear device and allows the superimposition of a transient heat/particle pulse to the steady-state heat flux plasma. Energy densities as high as 1MJ.m-2 have been reached for a pulse duration of 1ms. In this contribution, we report on the first experiments were made to investigate the effect of the combined steady-state/pulsed plasma on polycrystalline tungsten targets. Postmortem analysis of the targets was done by Scanning Electron Microscopy (SEM). Fast visible imaging was used to determine in-situ the threshold for tungsten release from the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.