To address data management and data exchange problems in the nuclear magnetic resonance (NMR) community, the Collaborative Computing Project for the NMR community (CCPN) created a "Data Model" that describes all the different types of information needed in an NMR structural study, from molecular structure and NMR parameters to coordinates. This paper describes the development of a set of software applications that use the Data Model and its associated libraries, thus validating the approach. These applications are freely available and provide a pipeline for high-throughput analysis of NMR data. Three programs work directly with the Data Model: CcpNmr Analysis, an entirely new analysis and interactive display program, the CcpNmr FormatConverter, which allows transfer of data from programs commonly used in NMR to and from the Data Model, and the CLOUDS software for automated structure calculation and assignment (Carnegie Mellon University), which was rewritten to interact directly with the Data Model. The ARIA 2.0 software for structure calculation (Institut Pasteur) and the QUEEN program for validation of restraints (University of Nijmegen) were extended to provide conversion of their data to the Data Model. During these developments the Data Model has been thoroughly tested and used, demonstrating that applications can successfully exchange data via the Data Model. The software architecture developed by CCPN is now ready for new developments, such as integration with additional software applications and extensions of the Data Model into other areas of research.
The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data depositories: (i) quantitative NMR spectral parameters for proteins, peptides, nucleic acids, carbohydrates and ligands or cofactors (assigned chemical shifts, coupling constants and peak lists) and derived data (relaxation parameters, residual dipolar couplings, hydrogen exchange rates, pKa values, etc.), (ii) databases for NMR restraints processed from original author depositions available from the Protein Data Bank, (iii) time-domain (raw) spectral data from NMR experiments used to assign spectral resonances and determine the structures of biological macromolecules and (iv) a database of one- and two-dimensional 1H and 13C one- and two-dimensional NMR spectra for over 250 metabolites. The BMRB website provides free access to all of these data. BMRB has tools for querying the archive and retrieving information and an ftp site (ftp.bmrb.wisc.edu) where data in the archive can be downloaded in bulk. Two BMRB mirror sites exist: one at the PDBj, Protein Research Institute, Osaka University, Osaka, Japan (bmrb.protein.osaka-u.ac.jp) and the other at CERM, University of Florence, Florence, Italy (bmrb.postgenomicnmr.net/). The site at Osaka also accepts and processes data depositions.
The Protein Data Bank (PDB) is the single global archive of experimentally determined three-dimensional (3D) structure data of biological macromolecules. Since 2003, the PDB has been managed by the Worldwide Protein Data Bank (wwPDB; wwpdb.org), an international consortium that collaboratively oversees deposition, validation, biocuration, and open access dissemination of 3D macromolecular structure data. The PDB Core Archive houses 3D atomic coordinates of more than 144 000 structural models of proteins, DNA/RNA, and their complexes with metals and small molecules and related experimental data and metadata. Structure and experimental data/metadata are also stored in the PDB Core Archive using the readily extensible wwPDB PDBx/mmCIF master data format, which will continue to evolve as data/metadata from new experimental techniques and structure determination methods are incorporated by the wwPDB. Impacts of the recently developed universal wwPDB OneDep deposition/validation/biocuration system and various methods-specific wwPDB Validation Task Forces on improving the quality of structures and data housed in the PDB Core Archive are described together with current challenges and future plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.