We previously showed that HIV-1 subtype C viruses elicit potent but highly type-specific neutralizing antibodies (nAb) within the first year of infection. In order to determine the specificity and evolution of these autologous nAbs, we examined neutralization escape in four individuals whose responses against the earliest envelope differed in magnitude and potency. Neutralization escape occurred in all participants, with later viruses showing decreased sensitivity to contemporaneous sera, although they retained sensitivity to new nAb responses. Early nAb responses were very restricted, occurring sequentially and targeting only two regions of the envelope. In V1V2, limited amino acid changes often involving indels or glycans, mediated partial or complete escape, with nAbs targeting the V1V2 region directly in 2 cases. The alpha-2 helix of C3 was also a nAb target, with neutralization escape associated with changes to positively charged residues. In one individual, relatively high titers of anti-C3 nAbs were required to drive genetic escape, taking up to 7 weeks for the resistant variant to predominate. Thereafter titers waned but were still measurable. Development of this single anti-C3 nAb specificity was associated with a 7-fold drop in HIV-1 viral load and a 4-fold rebound as the escape mutation emerged. Overall, our data suggest the development of a very limited number of neutralizing antibody specificities during the early stages of HIV-1 subtype C infection, with temporal fluctuations in specificities as escape occurs. While the mechanism of neutralization escape appears to vary between individuals, the involvement of limited regions suggests there might be common vulnerabilities in the HIV-1 subtype C transmitted envelope.
Discovery of sequence-specific silencing by activating the RNA interference (RNAi) pathway has led to exciting new strategies for treating infection with human immunodeficiency virus type 1 (HIV-1). Of the HIV-1 subtypes, C is especially common in areas of the world that are worst affected. Although prone to mutation, genome plasticity of this subtype is limited in functionally important regions. We identified conserved sequences within the HIV-1 subtype C gag open reading frame and assessed whether they are suitable targets for inhibition of viral replication by RNA Pol III-driven small hairpin RNAs (shRNAs). Initially, the efficacy of each of a panel of 10 shRNAs against HIV-1 was determined using a reporter assay. shRNAs A and B, which targeted the 5 end of gag, were most effective and were used to assess inhibition of replication in cultured cells of two R5 isolates (Du151 and Du422) and one X4 virus (SW7). These shRNAs diminished intracellular HIV-1 gag RNA and HIV-1 protein concentrations as well as p24 secretion by up to 80% without inducing an interferon response. However, shRNA-mediated knockdown efficacy against each of these viral isolates varied slightly. These data show successful activation of RNAi to inhibit the replication of biologically distinct HIV-1 subtype C isolates. The effector shRNAs described here are potential candidates for gene therapy applications against the most common global subtype of HIV-1.
Background Autoantibodies to β-cell specific antigens are markers of type 1 diabetes. The most recently identified autoantibodies are targeted to the zinc transporter 8 (ZnT8) protein located in the membrane of β-cell insulin secretory granules. The prevalence of ZnT8 autoantibodies in newly diagnosed participants with type 1 diabetes has been found to range from 33 to 80 %. Due to the lack of data on the immunological aetiology of type 1 diabetes in African populations, this study aimed to determine the prevalence of ZnT8 autoantibodies in black South Africans with type 1 diabetes and whether ZnT8 autoantibody positivity was associated with age at diagnosis and disease duration. Methods Participants with type 1 diabetes and controls were recruited from the greater Johannesburg area, South Africa. Positivity for ZnT8, GAD65 and IA2 autoantibodies was determined by ELISA. Results Participants with type 1 diabetes (n = 183) and controls (n = 49) were matched for age (29.1 ± 9.53 vs. 27.3 ± 7.29, respectively; p = 0.248). The mean age at diagnosis for participants with type 1 diabetes was 20.8 ± 8.46 years. The prevalence of ZnT8 autoantibody positivity was 17.5 % (32 of 183) in participants with type 1 diabetes with a median disease duration of 7.00 [2.00; 11.0] years. ZnT8 autoantibody prevalence in newly diagnosed participants (< 1 year duration) was 27.3 % (6 of 22). Logistic regression analysis found an association between ZnT8 autoantibody positivity and shorter disease duration (OR: 0.9 (0.81-1.00); p = 0.042). In addition, ZnT8 autoantibody positivity was significantly associated with an increased chance of being GAD65 (OR: 3.37 (1.10–10.3)) and IA2 (OR: 8.63 (2.82–26.4)) autoantibody positive. Multiple regression analysis found no association between ZnT8 autoantibody positivity and age at diagnosis. However, the presence of ≥ 2 autoantibodies was associated with a younger age at diagnosis of type 1 diabetes when compared to participants with ≤ 1 autoantibody (B = -5.270; p = 0.002). Conclusions The presence of ZnT8 autoantibodies was not related to a younger age at diagnosis in black South African patients with type 1 diabetes. However, the greater the numbers of autoantibodies present in an individual the earlier the age at diagnosis. ZnT8 autoantibodies decline with disease duration in the black South African population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.