Over the last two decades, prototype devices for future classical and quantum computing technologies have been fabricated, by using scanning tunneling microscopy and hydrogen resist lithography to position phosphorus atoms in silicon with atomic-scale precision. Despite these successes, phosphine remains the only donor precursor molecule to have been demonstrated as compatible with the hydrogen resist lithography technique. The potential benefits of atomic-scale placement of alternative dopant species have, until now, remained unexplored. In this work, we demonstrate the successful fabrication of atomic-scale structures of arsenic-in-silicon. Using a scanning tunneling microscope tip, we pattern a monolayer hydrogen mask to selectively place arsenic atoms on the Si(001) surface using arsine as the precursor molecule. We fully elucidate the surface chemistry and reaction pathways of arsine on Si(001), revealing significant differences to phosphine. We explain how these differences result in enhanced surface immobilization and inplane confinement of arsenic compared to phosphorus, and a dose-rate independent arsenic saturation density of 0.24±0.04 monolayers. We demonstrate the successful encapsulation of arsenic delta-layers using silicon molecular beam epitaxy, and find electrical characteristics that are competitive with equivalent structures fabricated with phosphorus. Arsenic delta-layers are also found to offer improvement in out-of-plane confinement compared to similarly prepared phosphorus layers, while still retaining >80% carrier activation and sheet resistances of <2 kΩ/□. These excellent characteristics of arsenic represent opportunities to enhance existing capabilities of atomic-scale fabrication of dopant structures in silicon, and are particularly important for threedimensional devices, where vertical control of the position of device components is critical. TOC GRAPHICS
Randomly-doped silicon has many competitive advantages for quantum computation; not only is it fast to fabricate but it could naturally contain high numbers of qubits and logic gates as a function of doping densities. We determine the densities of entangling gates in randomly doped silicon comprising two different dopant species. First, we define conditions and plot maps of the relative locations of the dopants necessary for them to form exchange interaction mediated entangling gates. Second, using nearest neighbour Poisson point process theory, we calculate the doping densities necessary for maximal densities of single and dual-species gates. We find agreement of our results with a Monte Carlo simulation, for which we present the algorithms, which handles multiple donor structures and scales optimally with the number of dopants and use it to extract donor structures not captured by our Poisson point process theory. Third, using the moving average cluster expansion technique, we make predictions for a proof of principle experiment demonstrating the control of one species by the orbital excitation of another. These combined approaches to density optimization in random distributions may be useful for other condensed matter systems as well as applications outside physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.