Dysfunction of the endolysosomal-autophagy network is emerging as an important pathogenic process in Alzheimer's disease. Mutations in the sorting receptor-encoding gene SORL1 cause autosomal-dominant Alzheimer's disease, and SORL1 variants increase risk for late-onset AD. To understand the contribution of SORL1 mutations to AD pathogenesis, we analyze the effects of a SORL1 truncating mutation on SORL1 protein levels and endolysosome function in human neurons. We find that truncating mutation results in SORL1 haploinsufficiency and enlarged endosomes in human neurons. Analysis of isogenic SORL1 wildtype, heterozygous, and homozygous null neurons demonstrates that, whereas SORL1 haploinsufficiency results in endosome dysfunction, complete loss of SORL1 leads to additional defects in lysosome function and autophagy. Neuronal endolysosomal dysfunction caused by loss of SORL1 is relieved by extracellular antisense oligonucleotide-mediated reduction of APP protein, demonstrating that PSEN1, APP, and SORL1 act in a common pathway regulating the endolysosome system, which becomes dysfunctional in AD.
Highlights d Analysis of 162 iPSC neural differentiation quantifies sources of variability d Variation in outcomes occurs along developmental brain spatial and regional axes d Variation depends on iPSC-line-specific differences in Wnt/ b-catenin signaling d Effects of signaling differences can be rescued by exogenous pathway activation
How is the information encoded within patterns of nerve impulses converted into diverse behavioral responses? To address this question, we conducted the largest genetic study to date of the electrophysiological and behavioral properties of synapses.Postsynaptic responses to elementary patterns of activity in the hippocampal CA1 region were measured in 58 lines of mice carrying mutations in the principal classes of excitatory postsynaptic proteins. A combinatorial molecular mechanism was identified in which distinct subsets of proteins amplified or attenuated responses across timescales from milliseconds to an hour. The same mechanism controlled the diversity and magnitude of innate and learned behavioral responses. PSD95 supercomplex proteins were central components of this synaptic machinery. The capacity of vertebrate synapses to compute activity patterns increased with genome evolution and is impaired by disease-relevant mutations. We propose that this species-conserved molecular mechanism converts the temporally encoded information in nerve impulses into the repertoire of innate and learned behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.