Neuroactive metabolites from the bark of
Galbulimima belgraveana
occur in variable distributions among trees and are not easily accessible through chemical synthesis because of elaborate bond networks and dense stereochemistry. Previous syntheses of complex congeners such as himgaline have relied on iterative, stepwise installation of multiple methine stereocenters. We decreased the synthetic burden of himgaline chemical space to nearly one-third of the prior best (7 to 9 versus 19 to 31 steps) by cross-coupling high fraction aromatic building blocks (high F
sp
2) followed by complete, stereoselective reduction to high fraction sp
3
products (high F
sp
3). This short entry into
Galbulimima
alkaloid space should facilitate extensive chemical exploration and biological interrogation.
Metal-catalyzed allene cycloisomerizations provide rapid entry into five-membered carbocyclic frameworks, a common motif in natural products and pharmaceuticals. While both Au(I) and Pd(0)-catalyzed allene cycloisomerizations give 5-endo-dig cyclization, Pd prefers the syn diastereomer in contrast to the anti isomer observed with Au. The change in stereoselectivity is proposed to arise from buildup of A1,3 strain during the key carbopalladation step to furnish the cycloisomerized products in moderate to good dr with yields comparable to Au(I) catalysts.
Pd-catalyzed transformations of allenyl malonates provide convenient access to functionalized carbocycles, but the influence of the ligand, solvent, base, and reaction conditions on the mechanism, regioselectivity, and product outcome of the cyclization is not well understood. Additionally, from the perspective of synthetic utility, access to either fully substituted or enantioenriched cyclopentane building blocks has not yet been achieved. This work describes how targeted changes to the reaction conditions enable predictable control over the mechanism of Pd-catalyzed allene cross-coupling/cyclization and cycloisomerization, irrespective of the allene substitution pattern. Both enantioenriched cyclopropanes and cyclopentenes can be obtained through axisto-center chirality transfer from the allene precursor at room temperature, which is not possible using reported Pd-catalyzed methods that result in racemization of the allene. Finally, the ability to divert the reactivity of the allenyl malonate from cross-coupling/ cyclization to cycloisomerization by a simple switch of the ligand on Pd from a bidentate phosphine to an electron-poor triphenylphosphite is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.