Lifetime contaminant and hormonal profiles have been reconstructed for an individual male blue whale (Balaenoptera musculus, Linnaeus 1758) using the earplug as a natural aging matrix that is also capable of archiving and preserving lipophilic compounds. These unprecedented lifetime profiles (i.e., birth to death) were reconstructed with a 6-mo resolution for a wide range of analytes including cortisol (stress hormone), testosterone (developmental hormone), organic contaminants (e.g., pesticides and flame retardants), and mercury. Cortisol lifetime profiles revealed a doubling of cortisol levels over baseline. Testosterone profiles suggest this male blue whale reached sexual maturity at approximately 10 y of age, which corresponds well with and improves on previous estimates. Early periods of the reconstructed contaminant profiles for pesticides (such as dichlorodiphenyltrichloroethanes and chlordanes), polychlorinated biphenyls, and polybrominated diphenyl ethers demonstrate significant maternal transfer occurred at 0-12 mo. The total lifetime organic contaminant burden measured between the earplug (sum of contaminants in laminae layers) and blubber samples from the same organism were similar. Total mercury profiles revealed reduced maternal transfer and two distinct pulse events compared with organic contaminants. The use of a whale earplug to reconstruct lifetime chemical profiles will allow for a more comprehensive examination of stress, development, and contaminant exposure, as well as improve the assessment of contaminant use/emission, environmental noise, ship traffic, and climate change on these important marine sentinels.cetaceans | cerumen | persistent organic pollutants
Polybrominated diphenyl ethers (PBDEs) have become ubiquitous environmental contaminants with potential for bioaccumulation and maternal-fetal transfer that has led to regulatory bans and/or phasing out of several technical mixtures of PBDEs. In the present study, six PBDE congeners (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, BDE 183) were evaluated for developmental effects on embryonic zebrafish. These congeners were chosen because they are environmentally relevant and cover a wide range of physical-chemical properties. Alterations in behavior, physical malformations, and mortality were scored daily until 168 h postfertilization (hpf). A concentration-dependent increase in spontaneous movement indicated an early onset of behavioral responses to PBDE exposures. Spontaneous movement was affected the most by BDE 47 and BDE 28, whereas BDE 183 did not alter behavior at any concentration tested. Swimming rates were significantly increased by BDE 28 at 96 and 120 hpf, but decreased swimming activity at 168 hpf. Additionally, BDE 47 significantly decreased the swimming rate at 168 hpf. Other endpoints included malformations and mortality. Congeners with fewer bromines (BDE 28, 47, 99, and 100) also induced a curved body axis starting around 120 hpf, which was followed by mortality. BDEs 153 and 183, however, did not elicit these adverse effects. A relationship was found between log K(OW) and median lethal concentration (LC50) and median effective concentration (EC50). Structure-activity relationships in this study suggest that PBDE acute toxicity results from a receptor-mediated effect and further studies are necessary to determine these pathways.
To quantify the contributions of fossil and biomass sources to the wintertime Arctic aerosol burden source apportionment is reported for elemental (EC) and organic carbon (OC) fractions of six PM10 samples collected during a wintertime (2012-2013) campaign in Barrow, AK. Radiocarbon apportionment of EC indicates that fossil sources contribute an average of 68 ± 9% (0.01-0.07 μg m(-3)) in midwinter decreasing to 49 ± 6% (0.02 μg m(-3)) in late winter. The mean contribution of fossil sources to OC for the campaign was stable at 38 ± 8% (0.04-0.32 μg m(-3)). Samples were also analyzed for organic tracers, including levoglucosan, for use in a chemical mass balance (CMB) source apportionment model. The CMB model was able to apportion 24-53% and 99% of the OC and EC burdens, respectively, during the campaign, with fossil OC contributions ranging from 25 to 74% (0.02-0.09 μg m(-3)) and fossil EC contributions ranging from 73 to 94% (0.03-0.07 μg m(-3)). Back trajectories identified two major wintertime source regions to Barrow: the Russian and North American Arctic. Atmospheric lifetimes of levoglucosan, ranging from 50 to 320 h, revealed variability in wintertime atmospheric processing of this biomass burning tracer. This study allows for unambiguous apportionment of EC to fossil fuel and biomass combustion sources and intercomparison with CMB modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.