Abstract-Ordinary chondrite meteorites contain silicates, Fe,Ni-metal grains, and troilite (FeS). Conjoined metal-troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910-960°C (the Fe, Ni-FeS eutectic). On the basis of two-pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni-FeS eutectic and thus conjoined metal-troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal-troilite grains in ordinary chondrites using highresolution X-ray computed tomography. The models show that metal-troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal-troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.
The oxidation state of Ge in silicate glasses, quenched from melts, was determined by X-ray absorption spectroscopy. The melts were equilibrated over the range of relative oxygen fugacities (fO2) from IW-3 to IW +10, where IW is the iron-wüstite oxygen buffer in logarithmic units. X-ray absorption near edge structure (XANES) spectra of the samples show that over the range in fO2 from IW-2.8 to IW +2.4, the Ge 4+ /(Ge 2+ + Ge 4+) ratio increases from 0.05 to 0.95. Modelling of extended X-ray absorption fine structure (EXAFS) gives the Ge 2+-O bond length as 1.89 ± 0.03 Å. Olivine-melt partitioning experiments were also conducted, which show that Ge 2+ is highly incompatible, with D "# $% &'/)#'* < 0.005, whereas D "# +% &'/)#'* is ~ 1, where D is the partition coefficient. The geochemical properties of Ge during the magmatic differentiation of the Moon and other reduced rocky planets and achondrite parent bodies will therefore be entirely different to that familiar from terrestrial examples. In particular, the incompatible nature of Ge 2+ may explain the anomalous enrichment of Ge in KREEP basalts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.