Drawing on the results of community-based research with a local hospice organisation, this article addresses the need to enhance social support for caregivers of people with life-threatening illnesses. The goal of the research was to involve palliative care stakeholders in the identification, prioritisation and implementation of social support interventions for caregivers who provide palliative care support as hospice volunteers and as family members of those at end-of-life. Guided by a community-based participatory research approach, primary data were collected from 39 volunteer and family member caregivers through four focus groups and nine personal diaries in July 2008. Content analysis and modified constant comparison techniques resulted in emergent themes and priorities relating to challenges, existing coping strategies and resources, and potential support interventions. The findings revealed communication, emotional support, education, advocacy and personal fatigue as the most important challenges to be addressed through support interventions at the organisational (professional support, volunteer mentoring and continuing education) and household levels (caregiver assessments, telephone support and follow-up). There was convergence in how caregivers perceived and access existing social supports, yet a crucial divergence in the availability of resources among volunteers and family members. The findings are discussed in the light of the capacity for hospices to implement social supports and the potential efficacy of the community-based participatory research approach for enhancing social support for caregivers in other parts of health-care and social care.
During differentiation, somatic cell nuclei acquire unique patterns of epigenetic modifications, such as DNA methylation, which affect the transcriptional activity of specific genes. Upon transfer into oocytes, however, the somatic nucleus undergoes reprogramming of these epigenetic modifications to achieve pluripotency. Oct4 is one of the critical pluripotency regulators, and is expressed in the germ line, including the pluripotent early embryonic cells. Previous studies showed that the upstream regulatory sequences of the Oct4 gene are distinctly methylated in somatic cells, and the DNA methylation of the regulatory sequences suppresses the transcriptional activity. Thus, successful reprogramming of the somatic cell nucleus to gain pluripotency must be accompanied by the demethylation of the Oct4 regulatory sequences. Here, we investigated the methylation pattern of the Oct4 promoter during early development of cloned mouse embryos. We found that the Oct4 promoter was only gradually demethylated during the early cleavage stages and that the ineffective demethylation of the promoter was associated with developmental retardation. We also found that the upstream sequences of the other pluripotency regulators, namely Nanog, Sox2, and Foxd3, were considerably under-methylated in cumulus cells. These results suggest that the Oct4 gene, as compared to the other pluripotency regulators, needs to undergo extensive demethylation during nuclear reprogramming, and that the failure of such demethylation is associated with inefficient development of cloned somatic cell embryos.
We previously reported that the genomes of gonadal germ cells at 11.5-19.5 days postcoitum (dpc) are incompetent to support fullterm development of cloned mouse embryos. In this study, we performed nuclear transfer using primordial germ cells (PGCs) from earlier stages at 8.5-10.5 dpc. When PGC nuclei at 8.5, 9.5, and 10.5 dpc were transferred into enucleated oocytes, seven cloned embryos developed into full-term offspring. Of these, five, all derived from 8.5-or 9.5-dpc PGCs, developed into healthy adults with normal fertility. Of the remaining two offspring derived from 10.5-dpc PGCs, one died shortly after birth, and the other showed slight growth retardation but subsequently developed into a fertile adult. We examined allele-specific methylation at the imprinted H19 and Snrpn loci in 9.5-to 11.5-dpc PGCs. Although the beginning of methylation erasure was evident on the H19 paternal allele at 9.5 dpc, most PGCs did not demonstrate significant erasure of paternal allele-specific methylation until 10.5 dpc. Maternal allele-specific methylation was largely erased from Snrpn by 10.5 dpc. By 11.5 dpc, the majority of PGCs showed nearly complete or complete erasure of allele-specific methylation in both H19 and Snrpn. These results demonstrate that at least some genomic imprints remain largely intact in 8.5-to 9.5-dpc PGCs and then undergo erasure at Ϸ10.5 dpc as the PGCs enter the genital ridges. Thus, migrating PGCs at 8.5-9.5 dpc can be successfully used as donors for nuclear transfer, whereas gonadal PGCs at 11.5 dpc and later are incompetent to support full-term development.developmental totipotency ͉ DNA methylation ͉ imprinted genes ͉ nuclear transfer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.