In this paper, some clustering techniques are analyzed to compare their ability to detect botnet traffic by selecting features that distinguish connections belonging to or not belonging to a botnet. By considering the history of network's connections, some clustering algorithms are used to derive a set of rules to decide which should be considered as a botnet. Our main contribution is to evaluate different clustering techniques to detect botnets based on their detection rate (true and false positives). The algorithms used are K-medoids and K-means clustering. Datasets used in this paper were extracted from the repositories ISOT and ISCX. Results on K-medoids were better for almost all the experiments than K-means.
Nowadays, the use of sensor nodes for the IoT is widespread. At the same time, cyberattacks on these systems have become a relevant design consideration in the practical deployment of wireless sensor networks (WSNs). However, there are some types of attacks that have to be prevented or detected as fast as possible, like, for example, attacks that put lives in danger. In this regard, a primary user emulation (PUE) attack in a structural health monitoring (SHM) system falls inside this category since nodes failing to report structural damages may cause a collapse of the building with no warning to people inside it. Building on this, we mathematically model an energy and resource utilization-efficient WSN based on the cognitive radio (CR) technique to monitor the SHM of buildings when a seismic activity occurs, making efficient use of scarce bandwidth when a PUE attack is in progress. The main performance metrics considered in this work are average packet delay and average energy consumption. The proposed model allows an additional tool for the prompt identification of such attacks in order to implement effective countermeasures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.