BACKGROUND: Aloe vera is a popular medicinal plant used widely by the cosmetic, pharmaceutical, and food industries. The A. vera leaf gel, which is used mostly for its positive effects on human health, contains over 75 different bioactive compounds, including aloin. Aloin is a toxic compound, and its content in A. vera leaf gel products depends on the different cultivation conditions and especially on leaf processing. RESULTS: In this study, A. vera leaf gel products, varied in terms of leaf processing, were analyzed using liquid chromatography for their aloin content, their antioxidant activity by 2,2 0-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS •+) and the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH •) antioxidant activity assays and their toxicity against Aliivibrio fisheri and SH-SY5Y cells. In the samples processed with industrial methods and in those filtered in the lab, the content of aloin was found below the limit (0.1 mg L −1) of the EU legislation however, the unprocessed and unfiltered samples were found to contain more than 10 mg L −1. Antioxidant activity was estimated to vary from 1.64 to 9.21 ∼mol Trolox mL −1 for DPPH • and from 0.73 to 5.14 ∼mol Trolox mL −1 for ABTS •+. Toxicity values on A. fisheri, expressed as the concentration at 50% loss of initial luminescence, ranged from 0.03 to 0.09 mg mL −1. The cytotoxic study indicated that aloin A at low concentrations (1 and 10 ∼g mL −1) protects SH-SY5Y cells from toxicity induced by hydrogen peroxide. CONCLUSIONS: Consequently, the filtration process of A. vera leaf gels, either laboratory or industrial, resulted in aloin A content below the EU legislation detection limits.
BACKGROUND: The authenticity of honey is of high importance since it affects its commercial value. The discrimination of the origin of honey is of prime importance to reinforce consumer trust. In this study, four chemometric models were developed based on the physicochemical parameters according to European and Greek legislation and one using Raman spectroscopy to discriminate Greek honey samples from three commercial monofloral botanical sources. RESULTS:The results of physicochemical (glucose, fructose, electrical activity) parameters chemometric models showed that the percentage of correct recognition fluctuated from 92.2% to 93.8% with cross-validation 90.6-92.2%, and the placement of test set was 79.0-84.3% successful. The addition of maltose content in the previous discrimination models did not significantly improve the discrimination. The corresponding percentages of the Raman chemometric model were 95.3%, 90.6%, and 84.3%. CONCLUSION:The five chemometric models developed presented similar and very satisfactory results. Given that the recording of Raman spectra is simple, fast, a minimal amount of sample is needed for the analysis, no solvent (environmentally friendly) is used, and no specialized personnel are required, we conclude that the chemometric model based on Raman spectroscopy is an efficient tool to discriminate the botanical origin of fir, pine, and thyme honey varieties.
The aim of this review is to describe the chromatographic, spectrometric, and spectroscopic techniques applied to honey for the determination of botanical and geographical origin and detection of adulteration. Based on the volatile profile of honey and using Solid Phase microextraction-Gas chromatography-Mass spectrometry (SPME-GC-MS) analytical technique, botanical and geographical characterization of honey can be successfully determined. In addition, the use of vibrational spectroscopic techniques, in particular, infrared (IR) and Raman spectroscopy, are discussed as a tool for the detection of honey adulteration and verification of its botanical and geographical origin. Manipulation of the obtained data regarding all the above-mentioned techniques was performed using chemometric analysis. This article reviews the literature between 2007 and 2020.
Olive leaves are rich in phenolic compounds, which give them antioxidant properties that are associated with a lower incidence of disease. Therefore, the aim of this work was to determine the phenolic content, antioxidant activity, and toxicity of the aqueous extracts of olive leaves of the main Spanish and Greek cultivated and wild genotypes. For these purposes, ‘Picual’ and ‘Arbequina’ leaves from Spain and ‘Koronoeiki’ and ‘Kalamon’ leaves from Greece were collected, as were wild olive leaves from both countries. The aqueous extracts of these genotypes were analyzed by HPLC-DAD, and the DPPH·, ABTS·+ Folin–Ciocalteu, and Microtox® methods were also used. ‘Picual’ had the highest oleuropein values, followed by wild olive leaves from both countries and ‘Arbequina’. The latter was reflected in the antioxidant activity measured by DPPH· and ABTS·+, which positioned the leaves of ‘Arbequina’, ‘Picual’, and the wild genotypes as having the most antioxidant activity. As expected, these leaves also had the highest total phenol content, as measured by Folin–Ciocalteu. Regarding the inhibition of the bioluminescence of Aliivibrio fischeri of the aqueous leaf extracts measured by Microtox®, the EC5015 ranged between 11.82 and 82.50 mg/mL, demonstrating similar behavior to other herbal infusions.
Origanum majorana is a medicinal and aromatic plant that belongs to the Lamiaceae family. It is cultivated in several parts of the world and, due to its splendid aroma and taste, is widely used for culinary purposes and in perfumes. The essential oil of the plant, to which is attributed its aroma, contains many secondary metabolites with valuable biological activity. One of them is the pesticide activity, which has attracted much interest. Given the necessity of replacing synthetic pesticides, essential oils are studied in an attempt to find naturally derived products. Thus, the aim of this review paper is to discuss the chemical profile of O. majorana essential oil and to present data regarding its insecticidal, repellent and fumigant activity. Data were collected from 1992 to 2022. Databases, including PubMed, Google Scholar, ScienceDirect and Scopus, were used for the research, and keywords, including O. majorana, sweet marjoram, essential oil, volatiles, pesticide, insecticide and repellent activity, were used. The results of this review paper indicate that O. majorana essential oil can be an alternative agent to manage pests. However, still, much research should be conducted to evaluate its toxicity against beneficial insects and to ensure its safety for human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.