We present a new type of sigma-helical structure based on a diamondoid (nanodiamond) framework, C(2)-symmetric [123]tetramantane, whose (+) and (-) isomers could be enantioseparated by HPLC techniques. Bromination of the enantiopure hydrocarbon led to the isolation of (+)-7-bromo-[123]tetramantane, which could be crystallized and subjected to X-ray structure analysis. Using the anomalous dispersion, we have identified this compound as the P isomer for the hydrocarbon moiety. Experimental and computed optical rotatory dispersion (ORD) and vibrational circular dichroism (VCD) spectra independently and in agreement with the X-ray structure analysis gave M-(-) as the configuration of the second eluted parent hydrocarbon isomer.
Rational control over helix and strand secondary structures is possible when conformationally restricted cyclic β‐amino acid residues are incorporated in the β‐peptides. Inversion of the relative configuration of these residues enables the preferred periodic structure to be switched from a helix to a single nonpolar strand (see picture).
Heterochiral homo-oligomers with alternating backbone configurations were constructed by using the different enantiomers of the cis- and trans-2-aminocyclopentanecarboxylic acid (ACPC) monomers. Molecular modeling and the spectroscopic techniques (NMR, ECD, and VCD) unequivocally proved that the alternating heterochiral cis-ACPC sequences form an H10/12 helix, where extra stabilization can be achieved via the cyclic side chains. The ECD and TEM measurements, together with molecular modeling, revealed that the alternating heterochiral trans-ACPC oligomers tend to attain a polar-strand secondary structure in solution, which can self-assemble into nanostructured fibrils. The observations indicate that coverage of all the possible secondary structures (various helix types and strand-mimicking conformations) can be attained with the help of cyclic beta-amino acid diastereomers. A relationship has been established between the backbone chirality pattern and the prevailing secondary structure, which underlines the role of stereochemical control in the beta-peptide secondary structure design and may contribute to future biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.